Ads
related to: quadratic equation class 10 4.1
Search results
Results From The WOW.Com Content Network
Figure 1. Plots of quadratic function y = ax 2 + bx + c, varying each coefficient separately while the other coefficients are fixed (at values a = 1, b = 0, c = 0). A quadratic equation whose coefficients are real numbers can have either zero, one, or two distinct real-valued solutions, also called roots.
If a quadratic function is equated with zero, then the result is a quadratic equation. The solutions of a quadratic equation are the zeros (or roots) of the corresponding quadratic function, of which there can be two, one, or zero. The solutions are described by the quadratic formula. A quadratic polynomial or quadratic function can involve ...
All quadratic equations have exactly two solutions in complex numbers (but they may be equal to each other), a category that includes real numbers, imaginary numbers, and sums of real and imaginary numbers. Complex numbers first arise in the teaching of quadratic equations and the quadratic formula. For example, the quadratic equation
That is, h is the x-coordinate of the axis of symmetry (i.e. the axis of symmetry has equation x = h), and k is the minimum value (or maximum value, if a < 0) of the quadratic function. One way to see this is to note that the graph of the function f ( x ) = x 2 is a parabola whose vertex is at the origin (0, 0).
Another instance of quadratic forms is Pell's equation =. Binary quadratic forms are closely related to ideals in quadratic fields. This allows the class number of a quadratic field to be calculated by counting the number of reduced binary quadratic forms of a given discriminant.
Gauss published the first and second proofs of the law of quadratic reciprocity on arts 125–146 and 262 of Disquisitiones Arithmeticae in 1801. In number theory, the law of quadratic reciprocity is a theorem about modular arithmetic that gives conditions for the solvability of quadratic equations modulo prime numbers. Due to its subtlety, it ...
The discriminant B 2 – 4AC of the conic section's quadratic equation (or equivalently the determinant AC – B 2 /4 of the 2 × 2 matrix) and the quantity A + C (the trace of the 2 × 2 matrix) are invariant under arbitrary rotations and translations of the coordinate axes, [14] [15] [16] as is the determinant of the 3 × 3 matrix above.
The first class is the discriminant of an algebraic number field, which, in some cases including quadratic fields, is the discriminant of a polynomial defining the field. Discriminants of the second class arise for problems depending on coefficients, when degenerate instances or singularities of the problem are characterized by the vanishing of ...