When.com Web Search

  1. Ad

    related to: tangential quadrilateral radius worksheet pdf form example

Search results

  1. Results From The WOW.Com Content Network
  2. Tangential quadrilateral - Wikipedia

    en.wikipedia.org/wiki/Tangential_quadrilateral

    If a four-bar linkage is made in the form of a tangential quadrilateral, then it will remain tangential no matter how the linkage is flexed, provided the quadrilateral remains convex. [25] [26] (Thus, for example, if a square is deformed into a rhombus it remains tangential, though to a smaller incircle).

  3. Pitot theorem - Wikipedia

    en.wikipedia.org/wiki/Pitot_theorem

    A tangential quadrilateral is usually defined as a convex quadrilateral for which all four sides are tangent to the same inscribed circle. Pitot's theorem states that, for these quadrilaterals, the two sums of lengths of opposite sides are the same. Both sums of lengths equal the semiperimeter of the quadrilateral. [2]

  4. Ex-tangential quadrilateral - Wikipedia

    en.wikipedia.org/wiki/Ex-tangential_quadrilateral

    In Euclidean geometry, an ex-tangential quadrilateral is a convex quadrilateral where the extensions of all four sides are tangent to a circle outside the quadrilateral. [1] It has also been called an exscriptible quadrilateral. [2] The circle is called its excircle, its radius the exradius and its center the excenter (E in the figure). The ...

  5. Newton's theorem (quadrilateral) - Wikipedia

    en.wikipedia.org/wiki/Newton's_theorem...

    Newton's theorem can easily be derived from Anne's theorem considering that in tangential quadrilaterals the combined lengths of opposite sides are equal (Pitot theorem: a + c = b + d). According to Anne's theorem, showing that the combined areas of opposite triangles PAD and PBC and the combined areas of triangles PAB and PCD are equal is ...

  6. Power of a point - Wikipedia

    en.wikipedia.org/wiki/Power_of_a_point

    Due to the Pythagorean theorem the number () has the simple geometric meanings shown in the diagram: For a point outside the circle () is the squared tangential distance | | of point to the circle . Points with equal power, isolines of Π ( P ) {\displaystyle \Pi (P)} , are circles concentric to circle c {\displaystyle c} .

  7. Bicentric quadrilateral - Wikipedia

    en.wikipedia.org/wiki/Bicentric_quadrilateral

    From the definition it follows that bicentric quadrilaterals have all the properties of both tangential quadrilaterals and cyclic quadrilaterals. Other names for these quadrilaterals are chord-tangent quadrilateral [1] and inscribed and circumscribed quadrilateral.

  8. Semiperimeter - Wikipedia

    en.wikipedia.org/wiki/Semiperimeter

    One of the triangle area formulas involving the semiperimeter also applies to tangential quadrilaterals, which have an incircle and in which (according to Pitot's theorem) pairs of opposite sides have lengths summing to the semiperimeter—namely, the area is the product of the inradius and the semiperimeter: =.

  9. Tangential polygon - Wikipedia

    en.wikipedia.org/wiki/Tangential_polygon

    The dual polygon of a tangential polygon is a cyclic polygon, which has a circumscribed circle passing through each of its vertices. All triangles are tangential, as are all regular polygons with any number of sides. A well-studied group of tangential polygons are the tangential quadrilaterals, which include the rhombi and kites.