When.com Web Search

  1. Ads

    related to: khan academy 6th grade math distributive property

Search results

  1. Results From The WOW.Com Content Network
  2. Distributive property - Wikipedia

    en.wikipedia.org/wiki/Distributive_property

    In approximate arithmetic, such as floating-point arithmetic, the distributive property of multiplication (and division) over addition may fail because of the limitations of arithmetic precision. For example, the identity 1 / 3 + 1 / 3 + 1 / 3 = ( 1 + 1 + 1 ) / 3 {\displaystyle 1/3+1/3+1/3=(1+1+1)/3} fails in decimal arithmetic , regardless of ...

  3. FOIL method - Wikipedia

    en.wikipedia.org/wiki/FOIL_method

    In the second step, the distributive law is used to simplify each of the two terms. Note that this process involves a total of three applications of the distributive property. In contrast to the FOIL method, the method using distributivity can be applied easily to products with more terms such as trinomials and higher.

  4. Grid method multiplication - Wikipedia

    en.wikipedia.org/wiki/Grid_method_multiplication

    The grid method uses the distributive property twice to expand the product, once for the horizontal factor, and once for the vertical factor. Historically the grid calculation (tweaked slightly) was the basis of a method called lattice multiplication , which was the standard method of multiple-digit multiplication developed in medieval Arabic ...

  5. Distribution - Wikipedia

    en.wikipedia.org/wiki/Distribution

    Distributivity, a property of binary operations that generalises the distributive law from elementary algebra; Distribution (number theory) Distribution problems, a common type of problems in combinatorics where the goal is to enumerate the number of possible distributions of m objects to n recipients, subject to various conditions; see ...

  6. Distributivity (order theory) - Wikipedia

    en.wikipedia.org/wiki/Distributivity_(order_theory)

    An element x is called a dual distributive element if ∀y,z: x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z). In a distributive lattice, every element is of course both distributive and dual distributive. In a non-distributive lattice, there may be elements that are distributive, but not dual distributive (and vice versa).

  7. Hyperoperation - Wikipedia

    en.wikipedia.org/wiki/Hyperoperation

    The parameters of the hyperoperation hierarchy are sometimes referred to by their analogous exponentiation term; [15] so a is the base, b is the exponent (or hyperexponent), [12] and n is the rank (or grade), [6] and moreover, (,) is read as "the bth n-ation of a", e.g. (,) is read as "the 9th tetration of 7", and (,) is read as "the 789th 123 ...