When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Enriched uranium - Wikipedia

    en.wikipedia.org/wiki/Enriched_uranium

    Enriched uranium is a type of uranium in which the percent composition of uranium-235 (written 235 U) has been increased through the process of isotope separation.Naturally occurring uranium is composed of three major isotopes: uranium-238 (238 U with 99.2732–99.2752% natural abundance), uranium-235 (235 U, 0.7198–0.7210%), and uranium-234 (234 U, 0.0049–0.0059%).

  3. Isotope separation - Wikipedia

    en.wikipedia.org/wiki/Isotope_separation

    The use of the nuclides produced is varied. The largest variety is used in research (e.g. in chemistry where atoms of "marker" nuclide are used to figure out reaction mechanisms). By tonnage, separating natural uranium into enriched uranium and depleted uranium is the largest application. In the following text, mainly uranium enrichment is ...

  4. Uranyl nitrate - Wikipedia

    en.wikipedia.org/wiki/Uranyl_nitrate

    Uranyl nitrate is important for nuclear reprocessing.It is the compound of uranium that results from dissolving the decladded spent nuclear fuel rods or yellowcake in nitric acid, for further separation and preparation of uranium hexafluoride for isotope separation for preparing of enriched uranium.

  5. Gaseous diffusion - Wikipedia

    en.wikipedia.org/wiki/Gaseous_diffusion

    Gaseous diffusion is a technology that was used to produce enriched uranium by forcing gaseous uranium hexafluoride (UF 6) through microporous membranes. This produces a slight separation (enrichment factor 1.0043) between the molecules containing uranium-235 ( 235 U) and uranium-238 ( 238 U).

  6. Separation of isotopes by laser excitation - Wikipedia

    en.wikipedia.org/wiki/Separation_of_isotopes_by...

    The 2014 Australian Broadcasting Corporation drama The Code uses "Laser Uranium Enrichment" as a core plot device. The female protagonist Sophie Walsh states that the technology will be smaller, less energy-intensive, and more difficult to control once it is a viable alternative to current methods of enrichment.

  7. Helikon vortex separation process - Wikipedia

    en.wikipedia.org/wiki/Helikon_vortex_separation...

    Other methods of separation were more practical at that time, but this method was designed and used in South Africa for producing reactor fuel with a uranium-235 content of around 3–5%, and 80–93% enriched uranium for use in nuclear weapons. The Uranium Enrichment Corporation of South Africa, Ltd. (UCOR) developed the process, operating a ...

  8. Zippe-type centrifuge - Wikipedia

    en.wikipedia.org/wiki/Zippe-type_centrifuge

    Natural uranium consists of three isotopes; the majority (99.274%) is U-238, while approximately 0.72% is U-235, fissile by thermal neutrons, and the remaining 0.0055% is U-234. If natural uranium is enriched to 3% U-235, it can be used as fuel for light water nuclear reactors. If it is enriched to 90% uranium-235, it can be used for nuclear ...

  9. Isotopes of uranium - Wikipedia

    en.wikipedia.org/wiki/Isotopes_of_uranium

    The increased percentage of 234 U in enriched natural uranium is acceptable in current nuclear reactors, but (re-enriched) reprocessed uranium might contain even higher fractions of 234 U, which is undesirable. [30] This is because 234 U is not fissile, and tends to absorb slow neutrons in a nuclear reactor—becoming 235 U. [29] [30]