Search results
Results From The WOW.Com Content Network
For example, acetic acid is a weak acid which has a = 1.75 x 10 −5. Its conjugate base is the acetate ion with K b = 10 −14 /K a = 5.7 x 10 −10 (from the relationship K a × K b = 10 −14), which certainly does not correspond to a strong base. The conjugate of a weak acid is often a weak base and vice versa.
The higher the proton affinity, the stronger the base and the weaker the conjugate acid in the gas phase.The (reportedly) strongest known base is the ortho-diethynylbenzene dianion (E pa = 1843 kJ/mol), [3] followed by the methanide anion (E pa = 1743 kJ/mol) and the hydride ion (E pa = 1675 kJ/mol), [4] making methane the weakest proton acid [5] in the gas phase, followed by dihydrogen.
On the other hand, if a chemical is a weak acid its conjugate base will not necessarily be strong. Consider that ethanoate, the conjugate base of ethanoic acid, has a base splitting constant (Kb) of about 5.6 × 10 −10, making it a weak base. In order for a species to have a strong conjugate base it has to be a very weak acid, like water.
Nitric acid, with a pK value of around −1.7, behaves as a strong acid in aqueous solutions with a pH greater than 1. [23] At lower pH values it behaves as a weak acid. pK a values for strong acids have been estimated by theoretical means. [24] For example, the pK a value of aqueous HCl has been estimated as −9.3.
The high negative value of H 0 in SbF 5 /HSO 3 F mixtures indicates that the solvation of the hydrogen ion is much weaker in this solvent system than in water. Other way of expressing the same phenomenon is to say that SbF 5 ·FSO 3 H is a much stronger proton donor than H 3 O + .
Strong acids, such as sulfuric or phosphoric acid, have large dissociation constants; weak acids, such as acetic acid, have small dissociation constants. The symbol K a , used for the acid dissociation constant, can lead to confusion with the association constant , and it may be necessary to see the reaction or the equilibrium expression to ...
Conversely, the addition of acid converts weak acid anions to CO 2 and continuous addition of strong acids can cause the alkalinity to become less than zero. [12] For example, the following reactions take place during the addition of acid to a typical seawater solution: B(OH) − 4 + H + → B(OH) 3 + H 2 O OH − + H + → H 2 O PO 3− 4 + 2 ...
Acetic acid is an example of a weak acid. The pH of the neutralized solution resulting from HA + OH − → H 2 O + A −. is not close to 7, as with a strong acid, but depends on the acid dissociation constant, K a, of the acid. The pH at the end-point or equivalence point in a titration may be calculated as follows.