Search results
Results From The WOW.Com Content Network
The mathematics of linear trend estimation is a variant of the standard ANOVA, giving different information, and would be the most appropriate test if the researchers hypothesize a trend effect in their test statistic. One example is levels of serum trypsin in six groups of subjects ordered by age decade (10–19 years up to 60–69 years ...
Algorithms for calculating variance play a major role in computational statistics.A key difficulty in the design of good algorithms for this problem is that formulas for the variance may involve sums of squares, which can lead to numerical instability as well as to arithmetic overflow when dealing with large values.
For example, if k = 3 and we suspect that B = 1 and B = 2 have similar frequencies (within each row), but that B = 3 has a different frequency, then the weights t = (1,1,0) should be used. If we suspect a linear trend in the frequencies, then the weights t = (0,1,2) should be used.
Variance-based sensitivity analysis (often referred to as the Sobol’ method or Sobol’ indices, after Ilya M. Sobol’) is a form of global sensitivity analysis. [ 1 ] [ 2 ] Working within a probabilistic framework, it decomposes the variance of the output of the model or system into fractions which can be attributed to inputs or sets of inputs.
If the trend can be assumed to be linear, trend analysis can be undertaken within a formal regression analysis, as described in Trend estimation. If the trends have other shapes than linear, trend testing can be done by non-parametric methods, e.g. Mann-Kendall test, which is a version of Kendall rank correlation coefficient.
Two (or three) out of three points in a row are more than 2 standard deviations from the mean in the same direction. There is a medium tendency for samples to be mediumly out of control. The side of the mean for the third point is unspecified.
The formulas given in the previous section allow one to calculate the point estimates of α and β — that is, the coefficients of the regression line for the given set of data. However, those formulas do not tell us how precise the estimates are, i.e., how much the estimators α ^ {\displaystyle {\widehat {\alpha }}} and β ^ {\displaystyle ...
In statistics, ordinary least squares (OLS) is a type of linear least squares method for choosing the unknown parameters in a linear regression model (with fixed level-one [clarification needed] effects of a linear function of a set of explanatory variables) by the principle of least squares: minimizing the sum of the squares of the differences between the observed dependent variable (values ...