Search results
Results From The WOW.Com Content Network
A distributed-feedback laser (DFB) is a type of laser diode, quantum-cascade laser or optical-fiber laser where the active region of the device contains a periodically structured element or diffraction grating. The structure builds a one-dimensional interference grating (Bragg scattering), and the grating provides optical feedback for the laser.
The company had a patented a Distributed Feedback Laser (DFB)-array technology, which enabled the manufacture of broadly tunable sources that have the same performance and reliability as fixed DFBs. Santur claimed to have set a new standard in the telecommunications industry with its technology that features a unique combination of high power ...
A distributed Bragg reflector laser (DBR) is a type of single frequency laser diode. Other practical types of single frequency laser diodes include DFB lasers and external cavity diode lasers. A fourth type, the cleaved-coupled-cavity laser has not proven to be commercially viable.
A distributed feedback (DFB) quantum cascade laser [25] is similar to a Fabry–Pérot laser, except for a distributed Bragg reflector (DBR) built on top of the waveguide to prevent it from emitting at other than the desired wavelength. This forces single mode operation of the laser, even at higher operating currents.
The gain for the laser is provided by a length of rare earth doped optical fiber, with the most common form using Yb 3+ ions as the active lasing ion in the silica fiber. These Yb-doped fiber lasers first operated at the 1 kW CW power level in 2004 [ 32 ] based on free space cavities but were not shown to operate with fiber Bragg grating ...
DFB laser arrays based on several thermal tuned DFB lasers, in which coarse tuning is achieved by selecting the correct laser bar. Fine tuning is then done thermally, such as in devices commercialized by Santur Corporation. Tunable VCSELs, in which one of the two mirror stacks is movable.
In a standard multiple quantum well laser, the active quantum wells used to generate photons are connected in parallel. Consequently, a large current is required to replenish each active well with electrons as it emits light. In a cascade laser, the wells are connected in series, meaning that the voltage is higher but the current is lower.
A fiber laser (or fibre laser in Commonwealth English) is a laser in which the active gain medium is an optical fiber doped with rare-earth elements such as erbium, ytterbium, neodymium, dysprosium, praseodymium, thulium and holmium. They are related to doped fiber amplifiers, which provide light amplification without lasing.