Search results
Results From The WOW.Com Content Network
For example, the log-normal function with such fits well with the size of secondarily produced droplets during droplet impact [56] and the spreading of an epidemic disease. [ 57 ] The value σ = 1 / 6 {\textstyle \sigma =1{\big /}{\sqrt {6}}} is used to provide a probabilistic solution for the Drake equation.
The median of a power law distribution x −a, with exponent a > 1 is 2 1/(a − 1) x min, where x min is the minimum value for which the power law holds [10] The median of an exponential distribution with rate parameter λ is the natural logarithm of 2 divided by the rate parameter: λ −1 ln 2.
The concentration of measure phenomenon was put forth in the early 1970s by Vitali Milman in his works on the local theory of Banach spaces, extending an idea going back to the work of Paul Lévy. [ 2 ] [ 3 ] It was further developed in the works of Milman and Gromov , Maurey , Pisier , Schechtman , Talagrand , Ledoux , and others.
Median: the value such that the set of values less than the median, and the set greater than the median, each have probabilities no greater than one-half. Mode : for a discrete random variable, the value with highest probability; for an absolutely continuous random variable, a location at which the probability density function has a local peak.
The moment generating function of a real random variable is the expected value of , as a function of the real parameter . For a normal distribution with density f {\textstyle f} , mean μ {\textstyle \mu } and variance σ 2 {\textstyle \sigma ^{2}} , the moment generating function exists and is equal to
For example, a distribution of points in the plane will typically have a mean and a mode, but the concept of median does not apply. The median makes sense when there is a linear order on the possible values. Generalizations of the concept of median to higher-dimensional spaces are the geometric median and the centerpoint.
In statistics, the median absolute deviation (MAD) is a robust measure of the variability of a univariate sample of quantitative data. It can also refer to the population parameter that is estimated by the MAD calculated from a sample.
The function is numerically very well behaved, so if a numerical solution is desired, it can be found using, for example, Newton's method. An initial value of k can be found either using the method of moments , or using the approximation