Ads
related to: how to solve for class mark in statistics worksheet
Search results
Results From The WOW.Com Content Network
For given low class number (such as 1, 2, and 3), Gauss gives lists of imaginary quadratic fields with the given class number and believes them to be complete. Infinitely many real quadratic fields with class number one Gauss conjectures that there are infinitely many real quadratic fields with class number one.
In statistics, the reference class problem is the problem of deciding what class to use when calculating the probability applicable to a particular case.. For example, to estimate the probability of an aircraft crashing, we could refer to the frequency of crashes among various different sets of aircraft: all aircraft, this make of aircraft, aircraft flown by this company in the last ten years ...
where is the instance, [] the expectation value, is a class into which an instance is classified, (|) is the conditional probability of label for instance , and () is the 0–1 loss function: L ( x , y ) = 1 − δ x , y = { 0 if x = y 1 if x ≠ y {\displaystyle L(x,y)=1-\delta _{x,y}={\begin{cases}0&{\text{if }}x=y\\1&{\text{if }}x\neq y\end ...
Algorithms of this nature use statistical inference to find the best class for a given instance. Unlike other algorithms, which simply output a "best" class, probabilistic algorithms output a probability of the instance being a member of each of the possible classes. The best class is normally then selected as the one with the highest probability.
In statistics, the 68–95–99.7 rule, also known as the empirical rule, and sometimes abbreviated 3sr, is a shorthand used to remember the percentage of values that lie within an interval estimate in a normal distribution: approximately 68%, 95%, and 99.7% of the values lie within one, two, and three standard deviations of the mean, respectively.
The idea of the proof of the class number formula is most easily seen when K = Q(i).In this case, the ring of integers in K is the Gaussian integers.. An elementary manipulation shows that the residue of the Dedekind zeta function at s = 1 is the average of the coefficients of the Dirichlet series representation of the Dedekind zeta function.