When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Vapor pressure - Wikipedia

    en.wikipedia.org/wiki/Vapor_pressure

    The Antoine equation [3] [4] is a pragmatic mathematical expression of the relation between the vapor pressure and the temperature of pure liquid or solid substances. It is obtained by curve-fitting and is adapted to the fact that vapor pressure is usually increasing and concave as a function of temperature.

  3. Clausius–Clapeyron relation - Wikipedia

    en.wikipedia.org/wiki/Clausius–Clapeyron_relation

    The Clausius–Clapeyron relation, in chemical thermodynamics, specifies the temperature dependence of pressure, most importantly vapor pressure, at a discontinuous phase transition between two phases of matter of a single constituent. It is named after Rudolf Clausius [1] and Benoît Paul Émile Clapeyron. [2]

  4. Vapour pressure of water - Wikipedia

    en.wikipedia.org/wiki/Vapour_pressure_of_water

    The temperature-vapor pressure relation inversely describes the relation between the boiling point of water and the pressure. This is relevant to both pressure cooking and cooking at high altitudes. An understanding of vapor pressure is also relevant in explaining high altitude breathing and cavitation .

  5. Antoine equation - Wikipedia

    en.wikipedia.org/wiki/Antoine_equation

    The Antoine equation is a class of semi-empirical correlations describing the relation between vapor pressure and temperature for pure substances. The Antoine equation is derived from the Clausius–Clapeyron relation. The equation was presented in 1888 by the French engineer Louis Charles Antoine (1825–1897). [1]

  6. Boiling point - Wikipedia

    en.wikipedia.org/wiki/Boiling_point

    A log-lin vapor pressure chart for various liquids. The higher the vapor pressure of a liquid at a given temperature, the lower the normal boiling point (i.e., the boiling point at atmospheric pressure) of the liquid. The vapor pressure chart to the right has graphs of the vapor pressures versus temperatures for a variety of liquids. [10]

  7. Vapor–liquid equilibrium - Wikipedia

    en.wikipedia.org/wiki/Vapor–liquid_equilibrium

    Recall from the first section that vapor pressures of liquids are very dependent on temperature. Thus the P° pure vapor pressures for each component are a function of temperature (T): For example, commonly for a pure liquid component, the Clausius–Clapeyron relation may be used to approximate how the vapor pressure varies as a function of ...

  8. Ideal gas law - Wikipedia

    en.wikipedia.org/wiki/Ideal_gas_law

    Isotherms of an ideal gas for different temperatures. The curved lines are rectangular hyperbolae of the form y = a/x. They represent the relationship between pressure (on the vertical axis) and volume (on the horizontal axis) for an ideal gas at different temperatures: lines that are farther away from the origin (that is, lines that are nearer to the top right-hand corner of the diagram ...

  9. Vapor pressures of the elements (data page) - Wikipedia

    en.wikipedia.org/wiki/Vapor_pressures_of_the...

    Values are given in terms of temperature necessary to reach the specified pressure. Valid results within the quoted ranges from most equations are included in the table for comparison. A conversion factor is included into the original first coefficients of the equations to provide the pressure in pascals (CR2: 5.006, SMI: -0.875).