Search results
Results From The WOW.Com Content Network
In semiconductor laser theory, the optical gain is produced in a semiconductor material. The choice of material depends on the desired wavelength and properties such as modulation speed. It may be a bulk semiconductor, but more often a quantum heterostructure. Pumping may be electrically or optically . All these structures can be described in a ...
A laser diode (LD, also injection laser diode or ILD or semiconductor laser or diode laser) is a semiconductor device similar to a light-emitting diode in which a diode pumped directly with electrical current can create lasing conditions at the diode's junction. [1]: 3
The height of the lines and bars gives an indication of the maximal power/pulse energy commercially available, while the color codifies the type of laser material (see the figure description for details). Most of the data comes from Weber's book Handbook of laser wavelengths, [1] with newer data in particular for the semiconductor lasers.
Lasers are used in fiber-optic and free-space optical communications, optical disc drives, laser printers, barcode scanners, semiconductor chip manufacturing (photolithography, etching), laser surgery and skin treatments, cutting and welding materials, military and law enforcement devices for marking targets and measuring range and speed, and ...
Pages in category "Semiconductor lasers" The following 20 pages are in this category, out of 20 total. This list may not reflect recent changes. ...
While in other laser materials like in gas lasers or solid state lasers, the processes associated with optical gain are rather simple, in semiconductors this is a complex many-body problem of interacting photons, electrons, and holes. Accordingly, understanding these processes is a major objective as being a basic requirement for device ...
This allows quantum dot lasers to be fabricated to operate at wavelengths previously not possible using semiconductor laser technology. [1] One challenge in the further advances with quantum dot lasers is the presence of multicarrier Auger processes which increases the nonradiative rate upon population inversion. [ 2 ]
[1] [2] For semiconductor lasers, the saturation effect is negligible. We derived the gain g for a Fabry-Perot semiconductor laser based on the density matrix equations and expressions for the natural linewidth. [1] [2] Thus, the linewidth theory [2] [8] [9] is an integral part of the nonlinear theory.