When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Borwein's algorithm - Wikipedia

    en.wikipedia.org/wiki/Borwein's_algorithm

    Start by setting [4] = = = + Then iterate + = + + = (+) + + = (+ +) + + + Then p k converges quadratically to π; that is, each iteration approximately doubles the number of correct digits.The algorithm is not self-correcting; each iteration must be performed with the desired number of correct digits for π 's final result.

  3. Bailey–Borwein–Plouffe formula - Wikipedia

    en.wikipedia.org/wiki/Bailey–Borwein–Plouffe...

    To calculate 16 n−k mod (8k + 1) quickly and efficiently, the modular exponentiation algorithm is done at the same loop level, not nested. When its running 16x product becomes greater than one, the modulus is taken, just as for the running total in each sum. Now to complete the calculation, this must be applied to each of the four sums in turn.

  4. Leibniz formula for π - Wikipedia

    en.wikipedia.org/wiki/Leibniz_formula_for_π

    The formula is a special case of the Euler–Boole summation formula for alternating series, providing yet another example of a convergence acceleration technique that can be applied to the Leibniz series. In 1992, Jonathan Borwein and Mark Limber used the first thousand Euler numbers to calculate π to 5,263 decimal places with the Leibniz ...

  5. List of mathematical series - Wikipedia

    en.wikipedia.org/wiki/List_of_mathematical_series

    An infinite series of any rational function of can be reduced to a finite series of polygamma functions, by use of partial fraction decomposition, [8] as explained here. This fact can also be applied to finite series of rational functions, allowing the result to be computed in constant time even when the series contains a large number of terms.

  6. Madhava series - Wikipedia

    en.wikipedia.org/wiki/Madhava_series

    The specific value ⁡ = can be used to calculate the circle constant π, and the arctangent series for 1 is conventionally called Leibniz's series. In recognition of Madhava's priority , in recent literature these series are sometimes called the Madhava–Newton series , [ 4 ] Madhava–Gregory series , [ 5 ] or Madhava–Leibniz series [ 6 ...

  7. Category:Pi algorithms - Wikipedia

    en.wikipedia.org/wiki/Category:Pi_algorithms

    This category presents articles pertaining to the calculation of Pi to arbitrary precision. Pages in category "Pi algorithms" The following 17 pages are in this category, out of 17 total.

  8. Arctangent series - Wikipedia

    en.wikipedia.org/wiki/Arctangent_series

    In recent literature the arctangent series is sometimes called the Mādhava–Gregory series to recognize Mādhava's priority (see also Mādhava series). [ 3 ] The special case of the arctangent of ⁠ 1 {\displaystyle 1} ⁠ is traditionally called the Leibniz formula for π , or recently sometimes the Mādhava–Leibniz formula :

  9. Ramanujan–Sato series - Wikipedia

    en.wikipedia.org/wiki/Ramanujan–Sato_series

    In mathematics, a Ramanujan–Sato series [1] [2] generalizes Ramanujan’s pi formulas such as, = = ()!! + to the form = = + by using other well-defined sequences of integers obeying a certain recurrence relation, sequences which may be expressed in terms of binomial coefficients (), and ,, employing modular forms of higher levels.