Search results
Results From The WOW.Com Content Network
For example, with this meaning, the faces of a cube comprise the cube itself (3-face), its (square) facets (2-faces), its (line segment) edges (1-faces), its (point) vertices (0-faces), and the empty set. In some areas of mathematics, such as polyhedral combinatorics, a polytope is by definition convex.
where V is the number of vertices, E is the number of edges, and F is the number of faces. This equation is known as Euler's polyhedron formula. Thus the number of vertices is 2 more than the excess of the number of edges over the number of faces. For example, since a cube has 12 edges and 6 faces, the formula implies that it has eight vertices.
where V is the number of vertices, E is the number of edges, and F is the number of faces. This equation is known as Euler's polyhedron formula. Thus the number of edges is 2 less than the sum of the numbers of vertices and faces. For example, a cube has 8 vertices and 6 faces, and hence 12 edges.
It comprises vertices (corner points), edges, faces and cells. A cell is the three-dimensional analogue of a face, and is therefore a polyhedron . Each face must join exactly two cells, analogous to the way in which each edge of a polyhedron joins just two faces.
The points, lines, and polygons of a polyhedron are referred to as its vertices, edges, and faces, respectively. [1] A polyhedron is considered to be convex if: [2] The shortest path between any two of its vertices lies either within its interior or on its boundary. None of its faces are coplanar—they do not share the same plane and do not ...
The high degree of symmetry of the Platonic solids can be interpreted in a number of ways. Most importantly, the vertices of each solid are all equivalent under the action of the symmetry group, as are the edges and faces. One says the action of the symmetry group is transitive on the vertices, edges, and faces.
General cuboids have many different types. When all of the rectangular cuboid's edges are equal in length, it results in a cube, with six square faces and adjacent faces meeting at right angles. [1] [3] Along with the rectangular cuboids, parallelepiped is a cuboid with six parallelogram. Rhombohedron is a cuboid with six rhombus faces.
However, there exist fast algorithms for this problem: for a graph with n vertices, it is possible to determine in time O(n) (linear time) whether the graph may be planar or not (see planarity testing). For a simple, connected, planar graph with v vertices and e edges and f faces, the following simple conditions hold for v ≥ 3: Theorem 1. e ...