Search results
Results From The WOW.Com Content Network
Ordinal numbers may be written in English with numerals and letter suffixes: 1st, 2nd or 2d, 3rd or 3d, ... Deutero-Isaiah. [3] Numbers beyond three are rare; those ...
Computable ordinals (or recursive ordinals) are certain countable ordinals: loosely speaking those represented by a computable function.There are several equivalent definitions of this: the simplest is to say that a computable ordinal is the order-type of some recursive (i.e., computable) well-ordering of the natural numbers; so, essentially, an ordinal is recursive when we can present the set ...
To define ℵ α for arbitrary ordinal number α, we must define the successor cardinal operation, which assigns to any cardinal number ρ the next larger well-ordered cardinal ρ + (if the axiom of choice holds, this is the (unique) next larger cardinal). We can then define the aleph numbers as follows: ℵ 0 = ω ℵ α+1 = (ℵ α) +
Such a number is algebraic and can be expressed as the sum of a rational number and the square root of a rational number. Constructible number: A number representing a length that can be constructed using a compass and straightedge. Constructible numbers form a subfield of the field of algebraic numbers, and include the quadratic surds.
In set theory, an ordinal number, or ordinal, is a generalization of ordinal numerals (first, second, n th, etc.) aimed to extend enumeration to infinite sets. [1]
Any finite natural number can be used in at least two ways: as an ordinal and as a cardinal. Cardinal numbers specify the size of sets (e.g., a bag of five marbles), whereas ordinal numbers specify the order of a member within an ordered set [9] (e.g., "the third man from the left" or "the twenty-seventh day of January").
Large numbers, far beyond those encountered in ... The second term in the definition of Graham's number, g 2 = 3 ... (here ω is the first infinite ordinal number ...
Also, is the smallest uncountable ordinal (to see that it exists, consider the set of equivalence classes of well-orderings of the natural numbers; each such well-ordering defines a countable ordinal, and is the order type of that set), is the smallest ordinal whose cardinality is greater than , and so on, and is the limit of for natural ...