When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Step function - Wikipedia

    en.wikipedia.org/wiki/Step_function

    The product of a step function with a number is also a step function. As such, the step functions form an algebra over the real numbers. A step function takes only a finite number of values. If the intervals , for =,, …, in the above definition of the step function are disjoint and their union is the real line, then () = for all .

  3. Step response - Wikipedia

    en.wikipedia.org/wiki/Step_response

    The step response of a system in a given initial state consists of the time evolution of its outputs when its control inputs are Heaviside step functions. In electronic engineering and control theory , step response is the time behaviour of the outputs of a general system when its inputs change from zero to one in a very short time.

  4. List of Laplace transforms - Wikipedia

    en.wikipedia.org/wiki/List_of_Laplace_transforms

    The following functions and variables are used in the table below: δ represents the Dirac delta function. u(t) represents the Heaviside step function. Literature may refer to this by other notation, including () or (). Γ(z) represents the Gamma function. γ is the Euler–Mascheroni constant. t is a real number.

  5. Transient response - Wikipedia

    en.wikipedia.org/wiki/Transient_response

    Damped oscillation is a typical transient response, where the output value oscillates until finally reaching a steady-state value.. In electrical engineering and mechanical engineering, a transient response is the response of a system to a change from an equilibrium or a steady state.

  6. Heaviside step function - Wikipedia

    en.wikipedia.org/wiki/Heaviside_step_function

    The Heaviside step function, or the unit step function, usually denoted by H or θ (but sometimes u, 1 or 𝟙), is a step function named after Oliver Heaviside, the value of which is zero for negative arguments and one for positive arguments. Different conventions concerning the value H(0) are in use.

  7. Laplace transform - Wikipedia

    en.wikipedia.org/wiki/Laplace_transform

    The unilateral Laplace transform takes as input a function whose time domain is the non-negative reals, which is why all of the time domain functions in the table below are multiples of the Heaviside step function, u(t). The entries of the table that involve a time delay τ are required to be causal (meaning that τ > 0).

  8. Step potential - Wikipedia

    en.wikipedia.org/wiki/Step_potential

    The step potential is simply the product of V 0, the height of the barrier, and the Heaviside step function: = {, <, The barrier is positioned at x = 0, though any position x 0 may be chosen without changing the results, simply by shifting position of the step by −x 0.

  9. Regulated integral - Wikipedia

    en.wikipedia.org/wiki/Regulated_integral

    A real-valued function φ : [a, b] → R is called a step function if there exists a finite partition = {= < < < =} of [a, b] such that φ is constant on each open interval (t i, t i+1) of Π; suppose that this constant value is c i ∈ R. Then, define the integral of a step function φ to be