Search results
Results From The WOW.Com Content Network
Nearly all the infrared radiation in sunlight is near infrared, shorter than 4 μm. On the surface of Earth, at far lower temperatures than the surface of the Sun, some thermal radiation consists of infrared in the mid-infrared region, much longer than in sunlight. Black-body, or thermal, radiation is continuous: it radiates at all wavelengths.
The infrared portion of the electromagnetic spectrum is usually divided into three regions; the near-, mid- and far-infrared, named for their relation to the visible spectrum. The higher-energy near-IR, approximately 14,000–4,000 cm −1 (0.7–2.5 μm wavelength) can excite overtone or combination modes of molecular vibrations .
Wavelengths of electromagnetic radiation, whatever medium they are traveling through, are usually quoted in terms of the vacuum wavelength, although this is not always explicitly stated. Generally, electromagnetic radiation is classified by wavelength into radio wave, microwave, infrared, visible light, ultraviolet, X-rays and gamma rays. The ...
The absorption of electromagnetic radiation by water depends on the state of the water. The absorption in the gas phase occurs in three regions of the spectrum. Rotational transitions are responsible for absorption in the microwave and far-infrared, vibrational transitions in the mid-infrared and near-infrared. Vibrational bands have rotational ...
Infrared radiation is divided into spectral subregions. While different subdivision schemes exist, [46] [47] the spectrum is commonly divided as near-infrared (0.75–1.4 μm), short-wavelength infrared (1.4–3 μm), mid-wavelength infrared (3–8 μm), long-wavelength infrared (8–15 μm) and far infrared (15–1000 μm). [48]
A fragmented part of the 'window' spectrum (one might say a louvred part of the 'window') can also be seen in the visible to mid-wavelength infrared between 0.2 and 5.5 μm. The infrared atmospheric window is an atmospheric window in the infrared spectrum where there is relatively little absorption of terrestrial thermal radiation by ...
Water vapor absorbing these wavelengths of IR energy is mainly attributed to water being a polar molecule. Water's polarity allows it to absorb and release radiation at far, near and mid-infrared wavelengths. [6] The polarity also largely impacts how water interacts with nature, for it allows complexes of water, such as the water dimer. [6]
Since the amount of atmospheric refraction is a function of the temperature gradient, temperature, pressure, and humidity (the amount of water vapor, which is especially important at mid-infrared wavelengths), the amount of effort needed for a successful compensation can be prohibitive. Surveyors, on the other hand, will often schedule their ...