Search results
Results From The WOW.Com Content Network
In graph theory, the planarity testing problem is the algorithmic problem of testing whether a given graph is a planar graph (that is, whether it can be drawn in the plane without edge intersections). This is a well-studied problem in computer science for which many practical algorithms have emerged, many taking advantage of novel data structures.
The problem of graph exploration can be seen as a variant of graph traversal. It is an online problem, meaning that the information about the graph is only revealed during the runtime of the algorithm. A common model is as follows: given a connected graph G = (V, E) with non-negative edge weights. The algorithm starts at some vertex, and knows ...
Tarjan's strongly connected components algorithm is an algorithm in graph theory for finding the strongly connected components (SCCs) of a directed graph. It runs in linear time , matching the time bound for alternative methods including Kosaraju's algorithm and the path-based strong component algorithm .
Force-directed graph drawing algorithms assign forces among the set of edges and the set of nodes of a graph drawing.Typically, spring-like attractive forces based on Hooke's law are used to attract pairs of endpoints of the graph's edges towards each other, while simultaneously repulsive forces like those of electrically charged particles based on Coulomb's law are used to separate all pairs ...
In graph theory and theoretical computer science, the longest path problem is the problem of finding a simple path of maximum length in a given graph.A path is called simple if it does not have any repeated vertices; the length of a path may either be measured by its number of edges, or (in weighted graphs) by the sum of the weights of its edges.
Graph algorithms solve problems related to graph theory. Subcategories. This category has the following 3 subcategories, out of 3 total. ...
Dijkstra's algorithm is usually the working principle behind link-state routing protocols. OSPF and IS-IS are the most common. Unlike Dijkstra's algorithm, the Bellman–Ford algorithm can be used on graphs with negative edge weights, as long as the graph contains no negative cycle reachable from the source vertex s. The presence of such cycles ...
In graph theory, the blossom algorithm is an algorithm for constructing maximum matchings on graphs. The algorithm was developed by Jack Edmonds in 1961, [1] and published in 1965. [2] Given a general graph G = (V, E), the algorithm finds a matching M such that each vertex in V is incident with at most one edge in M and | M | is maximized. The ...