When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Integer overflow - Wikipedia

    en.wikipedia.org/wiki/Integer_overflow

    The register width of a processor determines the range of values that can be represented in its registers. Though the vast majority of computers can perform multiple-precision arithmetic on operands in memory, allowing numbers to be arbitrarily long and overflow to be avoided, the register width limits the sizes of numbers that can be operated on (e.g., added or subtracted) using a single ...

  3. In-place algorithm - Wikipedia

    en.wikipedia.org/wiki/In-place_algorithm

    Identifying the in-place algorithms with L has some interesting implications; for example, it means that there is a (rather complex) in-place algorithm to determine whether a path exists between two nodes in an undirected graph, [3] a problem that requires O(n) extra space using typical algorithms such as depth-first search (a visited bit for ...

  4. Partition problem - Wikipedia

    en.wikipedia.org/wiki/Partition_problem

    Given such an instance, construct an instance of Partition in which the input set contains the original set plus two elements: z 1 and z 2, with z 1 = sum(S) and z 2 = 2T. The sum of this input set is sum(S) + z 1 + z 2 = 2 sum(S) + 2T, so the target sum for Partition is sum(S) + T. Suppose there exists a solution S′ to the SubsetSum instance.

  5. Carry (arithmetic) - Wikipedia

    en.wikipedia.org/wiki/Carry_(arithmetic)

    The same carry bit is also generally used to indicate borrows in subtraction, though the bit's meaning is inverted due to the effects of two's complement arithmetic. Normally, a carry bit value of "1" signifies that an addition overflowed the ALU, and must be accounted for when adding data words of lengths greater than that of the CPU. For ...

  6. Coin problem - Wikipedia

    en.wikipedia.org/wiki/Coin_problem

    Reducing and re-arranging the coefficients by adding multiples of as necessary, we can assume < (in fact, this is the unique such satisfying the equation and inequalities). Similarly we take u , v {\displaystyle u,v} satisfying N − k = u a + v b {\displaystyle N-k=ua+vb} and 0 ≤ u < b {\displaystyle 0\leq u<b} .

  7. Carry-save adder - Wikipedia

    en.wikipedia.org/wiki/Carry-save_adder

    A carry-save adder [1] [2] [nb 1] is a type of digital adder, used to efficiently compute the sum of three or more binary numbers. It differs from other digital adders in that it outputs two (or more) numbers, and the answer of the original summation can be achieved by adding these outputs together.

  8. Karatsuba algorithm - Wikipedia

    en.wikipedia.org/wiki/Karatsuba_algorithm

    The basic principle of Karatsuba's algorithm is divide-and-conquer, using a formula that allows one to compute the product of two large numbers and using three multiplications of smaller numbers, each with about half as many digits as or , plus some additions and digit shifts.

  9. Harshad number - Wikipedia

    en.wikipedia.org/wiki/Harshad_number

    Every natural number not exceeding one billion is either a harshad number or the sum of two harshad numbers. Conditional to a technical hypothesis on the zeros of certain Dedekind zeta functions , Sanna proved that there exists a positive integer k {\displaystyle k} such that every natural number is the sum of at most k {\displaystyle k ...