When.com Web Search

  1. Ad

    related to: machine learning for pattern recognition pdf notes book

Search results

  1. Results From The WOW.Com Content Network
  2. Prior knowledge for pattern recognition - Wikipedia

    en.wikipedia.org/wiki/Prior_knowledge_for...

    A very common type of prior knowledge in pattern recognition is the invariance of the class (or the output of the classifier) to a transformation of the input pattern. This type of knowledge is referred to as transformation-invariance. The mostly used transformations used in image recognition are: translation; rotation; skewing; scaling.

  3. Pattern recognition - Wikipedia

    en.wikipedia.org/wiki/Pattern_recognition

    In machine learning, pattern recognition is the assignment of a label to a given input value. In statistics, discriminant analysis was introduced for this same purpose in 1936. An example of pattern recognition is classification , which attempts to assign each input value to one of a given set of classes (for example, determine whether a given ...

  4. Thomas G. Dietterich - Wikipedia

    en.wikipedia.org/wiki/Thomas_G._Dietterich

    Machine learning can uncover patterns in data to model the migration of species. But there are many other applications for the same techniques which will allow organizations to better manage our forests, oceans, and endangered species, as well as improve traffic flow, water systems, the electrical power grid, and more.

  5. Outline of machine learning - Wikipedia

    en.wikipedia.org/wiki/Outline_of_machine_learning

    Machine learning (ML) is a subfield of artificial intelligence within computer science that evolved from the study of pattern recognition and computational learning theory. [1] In 1959, Arthur Samuel defined machine learning as a "field of study that gives computers the ability to learn without being explicitly programmed". [ 2 ]

  6. Data mining - Wikipedia

    en.wikipedia.org/wiki/Data_mining

    These patterns can then be seen as a kind of summary of the input data, and may be used in further analysis or, for example, in machine learning and predictive analytics. For example, the data mining step might identify multiple groups in the data, which can then be used to obtain more accurate prediction results by a decision support system .

  7. Machine learning - Wikipedia

    en.wikipedia.org/wiki/Machine_learning

    A representative book on research into machine learning during the 1960s was Nilsson's book on Learning Machines, dealing mostly with machine learning for pattern classification. [15] Interest related to pattern recognition continued into the 1970s, as described by Duda and Hart in 1973. [16]

  8. Random subspace method - Wikipedia

    en.wikipedia.org/wiki/Random_subspace_method

    In machine learning the random subspace method, [1] also called attribute bagging [2] or feature bagging, is an ensemble learning method that attempts to reduce the correlation between estimators in an ensemble by training them on random samples of features instead of the entire feature set.

  9. Training, validation, and test data sets - Wikipedia

    en.wikipedia.org/wiki/Training,_validation,_and...

    A training data set is a data set of examples used during the learning process and is used to fit the parameters (e.g., weights) of, for example, a classifier. [9] [10]For classification tasks, a supervised learning algorithm looks at the training data set to determine, or learn, the optimal combinations of variables that will generate a good predictive model. [11]