Search results
Results From The WOW.Com Content Network
⎕CR 'PrimeNumbers' ⍝ Show APL user-function PrimeNumbers Primes ← PrimeNumbers N ⍝ Function takes one right arg N (e.g., show prime numbers for 1 ... int N) Primes ← (2 =+ ⌿ 0 = (⍳ N) ∘. |⍳ N) / ⍳ N ⍝ The Ken Iverson one-liner PrimeNumbers 100 ⍝ Show all prime numbers from 1 to 100 2 3 5 7 11 13 17 19 23 29 31 37 41 43 ...
This is a list of articles about prime numbers. A prime number (or prime) is a natural number greater than 1 that has no positive divisors other than 1 and itself. By Euclid's theorem, there are an infinite number of prime numbers. Subsets of the prime numbers may be generated with various formulas for primes.
For example, 3 is a Mersenne prime as it is a prime number and is expressible as 2 2 − 1. [1] [2] The exponents p corresponding to Mersenne primes must themselves be prime, although the vast majority of primes p do not lead to Mersenne primes—for example, 2 11 − 1 = 2047 = 23 × 89. [3]
The following table lists the progression of the largest known prime number in ascending order. [4] Here M p = 2 p − 1 is the Mersenne number with exponent p, where p is a prime number. The longest record-holder known was M 19 = 524,287, which was the largest known prime for 144 years. No records are known prior to 1456. [citation needed]
95 characters; the 52 alphabet characters belong to the Latin script. The remaining 43 belong to the common script. The 33 characters classified as ASCII Punctuation & Symbols are also sometimes referred to as ASCII special characters. Often only these characters (and not other Unicode punctuation) are what is meant when an organization says a ...
This category includes articles relating to prime numbers and primality. For a list of prime numbers, see list of prime numbers . This category roughly corresponds to MSC 11A41 Primes and MSC 11A51 Factorization; primality
A prime sieve or prime number sieve is a fast type of algorithm for finding primes. There are many prime sieves. The simple sieve of Eratosthenes (250s BCE), the sieve of Sundaram (1934), the still faster but more complicated sieve of Atkin [1] (2003), sieve of Pritchard (1979), and various wheel sieves [2] are most common.
In number theory, a left-truncatable prime is a prime number which, in a given base, contains no 0, and if the leading ("left") digit is successively removed, then all resulting numbers are prime. For example, 9137, since 9137, 137, 37 and 7 are all prime. Decimal representation is often assumed and always used in this article.