Search results
Results From The WOW.Com Content Network
The Golgi tendon organ (GTO) (also called Golgi organ, tendon organ, neurotendinous organ or neurotendinous spindle) is a proprioceptor – a type of sensory receptor that senses changes in muscle tension. It lies at the interface between a muscle and its tendon known as the musculotendinous junction also known as the myotendinous junction. [1]
The Golgi tendon reflex operates as a protective feedback mechanism to control the tension of an active muscle by causing relaxation before the tendon tension becomes high enough to cause damage. [7] First, as a load is placed on the muscle, the afferent neuron from the Golgi tendon organ fires into the central nervous system.
Golgi's method is a silver staining technique that is used to visualize nervous tissue under light microscopy. The method was discovered by Camillo Golgi , an Italian physician and scientist , who published the first picture made with the technique in 1873. [ 1 ]
Deep fascia can also relax slowly as some mechanoreceptors respond to changes over longer timescales. Unlike the Golgi tendon organs, Golgi receptors report joint position independent of muscle contraction. This helps the body to know where the bones are at any given moment. Ruffini endings respond to regular stretching and to slow sustained ...
Camillo Golgi (Italian: [kaˈmillo ˈɡɔldʒi]; 7 July 1843 – 21 January 1926) was an Italian biologist and pathologist known for his works on the central nervous system.He studied medicine at the University of Pavia (where he later spent most of his professional career) between 1860 and 1868 under the tutelage of Cesare Lombroso.
In neuroscience, Golgi cells are the most abundant inhibitory interneurons found within the granular layer of the cerebellum. [1] Golgi cells can be found in the granular layer at various layers. [2] The Golgi cell is essential for controlling the activity of the granular layer. [3] They were first identified as inhibitory in 1964. [4]
The vanilloid receptor (VR-1, TRPV1) is a receptor that is found on the free nerve endings of both C and Aδ fibers that responds to elevated levels of heat (>43 °C) and the chemical capsaicin. [10] Capsaicin activates C fibers by opening a ligand-gated ion channel and causing an action potential to occur. [10]
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.