Ad
related to: do carmo riemannian geometry pdf
Search results
Results From The WOW.Com Content Network
Do Carmo's main research interests were Riemannian geometry and the differential geometry of surfaces. [3]In particular, he worked on rigidity and convexity of isometric immersions, [26] [27] stability of hypersurfaces [28] [29] and of minimal surfaces, [30] [31] topology of manifolds, [32] isoperimetric problems, [33] minimal submanifolds of a sphere, [34] [35] and manifolds of constant mean ...
A course in metric geometry. Graduate Studies in Mathematics. Vol. 33. Providence, RI: American Mathematical Society. doi:10.1090/gsm/033. ISBN 0-8218-2129-6. MR 1835418. Zbl 0981.51016. (Erratum: ) do Carmo, Manfredo Perdigão (1992). Riemannian geometry. Mathematics: Theory & Applications (Translated from the second Portuguese edition of 1979 ...
The fundamental theorem of Riemannian geometry states that on any Riemannian manifold (or pseudo-Riemannian manifold) there is a unique affine connection that is torsion-free and metric-compatible, called the Levi-Civita connection or (pseudo-) Riemannian connection of the given metric.
The Cartan–Hadamard theorem in conventional Riemannian geometry asserts that the universal covering space of a connected complete Riemannian manifold of non-positive sectional curvature is diffeomorphic to R n. In fact, for complete manifolds of non-positive curvature, the exponential map based at any point of the manifold is a covering map.
Riemannian geometry is the branch of differential geometry that studies Riemannian manifolds, defined as smooth manifolds with a Riemannian metric (an inner product on the tangent space at each point that varies smoothly from point to point). This gives, in particular, local notions of angle, length of curves, surface area and volume.
This demonstrates that a Riemannian metric and an orientation on a two-dimensional manifold combine to induce the structure of a Riemann surface (i.e. a one-dimensional complex manifold). Furthermore, given an oriented surface, two Riemannian metrics induce the same holomorphic atlas if and only if they are conformal to one another.
For general Riemannian manifolds one has to add the curvature of ambient space; if N is a manifold embedded in a Riemannian manifold (M,g) then the curvature tensor R N of N with induced metric can be expressed using the second fundamental form and R M, the curvature tensor of M:
Let be a smooth manifold and let be a one-parameter family of Riemannian or pseudo-Riemannian metrics. Suppose that it is a differentiable family in the sense that for any smooth coordinate chart, the derivatives v i j = ∂ ∂ t ( ( g t ) i j ) {\displaystyle v_{ij}={\frac {\partial }{\partial t}}{\big (}(g_{t})_{ij}{\big )}} exist and are ...