Search results
Results From The WOW.Com Content Network
Graham's number is an immense number that arose as an upper bound on the answer of a problem in the mathematical field of Ramsey theory. It is much larger than many other large numbers such as Skewes's number and Moser's number , both of which are in turn much larger than a googolplex .
At the same time that he suggested "googol" he gave a name for a still larger number: "googolplex". A googolplex is much larger than a googol, but is still finite, as the inventor of the name was quick to point out. It was first suggested that a googolplex should be 1, followed by writing zeros until you got tired.
Thus the "order of magnitude" of a number (on a larger scale than usually meant), can be characterized by the number of times (n) one has to take the to get a number between 1 and 10. Thus, the number is between 10 ↑ ↑ n {\displaystyle 10\uparrow \uparrow n} and 10 ↑ ↑ ( n + 1 ) {\displaystyle 10\uparrow \uparrow (n+1)} .
Sagan gave an example that if the entire volume of the observable universe is filled with fine dust particles roughly 1.5 micrometers in size (0.0015 millimeters), then the number of different combinations in which the particles could be arranged and numbered would be about one googolplex. [8] [9]
For premium support please call: 800-290-4726 more ways to reach us
A googol is the large number 10 100 or ten to the power of one hundred. In decimal notation, it is written as the digit 1 followed by one hundred zeros: 10, 000, 000 ...
Mathematics:, a number in the googol family called a googolplexplex, googolplexian, or googolduplex. 1 followed by a googolplex zeros, or 10 googolplex Cosmology: The uppermost estimate to the size of the entire universe is approximately 10 10 10 122 {\displaystyle 10^{10^{10^{122}}}} times that of the observable universe .
The closest I can come to visualizing Graham's number is ∞-1 (i.e. less than ∞, but still more than I could ever even hope to imagine). --WikiMarshall 06:17, 26 June 2007 (UTC) Think of a number, any number. Is it even bigger than G? If you picked randomly, almost surely yes. Graham's number is way, way, smaller than infinity.