Search results
Results From The WOW.Com Content Network
Proton exchange membrane electrolysis Metadata This file contains additional information, probably added from the digital camera or scanner used to create or digitize it.
A proton-exchange membrane, or polymer-electrolyte membrane (PEM), is a semipermeable membrane generally made from ionomers and designed to conduct protons while acting as an electronic insulator and reactant barrier, e.g. to oxygen and hydrogen gas. [1]
Download as PDF; Printable version; ... Proton-exchange membrane, semipermeable; ... whose file format is also often used for X.509 certificates;
The proton-exchange membrane is commonly made of materials such as perfluorosulfonic acid (PFSA, sold commercially as Nafion and Aquivion), which minimize gas crossover and short circuiting of the fuel cell. A disadvantage of fluor containing polymers is the fact that during production (and disposal) PFAS products are formed.
Proton exchange membrane (PEM) electrolysis is the electrolysis of water in a cell equipped with a solid polymer electrolyte (SPE) [3] that is responsible for the conduction of protons, separation of product gases, and electrical insulation of the electrodes. The PEM electrolyzer was introduced to overcome the issues of partial load, low ...
Whereas the common PEM fuel cell, also called Low Temperature Proton Exchange Membrane fuel cell (LT-PEM), must usually be operated with hydrogen with high purity of more than 99.9 % the HT-PEM fuel cell is less sensitive to impurities and thus is typically operated with reformate gas with hydrogen concentration of about 50 to 75 %.
The technology shares the thermal and kinetic advantages [which?] of high temperature molten carbonate and solid oxide fuel cells, while exhibiting all of the intrinsic benefits of proton conduction in proton-exchange membrane fuel cells (PEMFC) and phosphoric acid fuel cells (PAFC). PCFCs exhaust water at the cathode and unused fuel, fuel ...
The fuel cartridge stores the methanol fuel. Depending on the system design either 100% methanol (IMPCA industrial standard) or a mixture of methanol with up to 40 vol% water is usually used as fuel for the RMFC system. 100% methanol results in lower fuel consumption than water-methanol mixture (Premix) but goes along with higher fuel cell system complexity for condensing of cathode moisture.