When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Invertible matrix - Wikipedia

    en.wikipedia.org/wiki/Invertible_matrix

    Although an explicit inverse is not necessary to estimate the vector of unknowns, it is the easiest way to estimate their accuracy, found in the diagonal of a matrix inverse (the posterior covariance matrix of the vector of unknowns). However, faster algorithms to compute only the diagonal entries of a matrix inverse are known in many cases. [19]

  3. Sherman–Morrison formula - Wikipedia

    en.wikipedia.org/wiki/Sherman–Morrison_formula

    A matrix (in this case the right-hand side of the Sherman–Morrison formula) is the inverse of a matrix (in this case +) if and only if = =. We first verify that the right hand side ( Y {\displaystyle Y} ) satisfies X Y = I {\displaystyle XY=I} .

  4. Determinant - Wikipedia

    en.wikipedia.org/wiki/Determinant

    A matrix with entries in a field is invertible precisely if its determinant is nonzero. This follows from the multiplicativity of the determinant and the formula for the inverse involving the adjugate matrix mentioned below. In this event, the determinant of the inverse matrix is given by

  5. Cramer's rule - Wikipedia

    en.wikipedia.org/wiki/Cramer's_rule

    This gives a formula for the inverse of A, provided det(A) ≠ 0. In fact, this formula works whenever F is a commutative ring , provided that det( A ) is a unit . If det( A ) is not a unit, then A is not invertible over the ring (it may be invertible over a larger ring in which some non-unit elements of F may be invertible).

  6. Transformation matrix - Wikipedia

    en.wikipedia.org/wiki/Transformation_matrix

    When A is an invertible matrix there is a matrix A −1 that represents a transformation that "undoes" A since its composition with A is the identity matrix. In some practical applications, inversion can be computed using general inversion algorithms or by performing inverse operations (that have obvious geometric interpretation, like rotating ...

  7. Woodbury matrix identity - Wikipedia

    en.wikipedia.org/wiki/Woodbury_matrix_identity

    In mathematics, specifically linear algebra, the Woodbury matrix identity – named after Max A. Woodbury [1] [2] – says that the inverse of a rank-k correction of some matrix can be computed by doing a rank-k correction to the inverse of the original matrix.

  8. Schur complement - Wikipedia

    en.wikipedia.org/wiki/Schur_complement

    If p and q are both 1 (i.e., A, B, C and D are all scalars), we get the familiar formula for the inverse of a 2-by-2 matrix: = [] provided that AD − BC is non-zero.. In general, if A is invertible, then

  9. Tridiagonal matrix - Wikipedia

    en.wikipedia.org/wiki/Tridiagonal_matrix

    In general, the inverse of a tridiagonal matrix is a semiseparable matrix and vice versa. [11] The inverse of a symmetric tridiagonal matrix can be written as a single-pair matrix (a.k.a. generator-representable semiseparable matrix) of the form [12] [13]