Search results
Results From The WOW.Com Content Network
Molecular motors are natural (biological) or artificial molecular machines that are the essential agents of movement in living organisms. In general terms, a motor is a device that consumes energy in one form and converts it into motion or mechanical work ; for example, many protein -based molecular motors harness the chemical free energy ...
Synthetic molecular motors are molecular machines capable of continuous directional rotation under an energy input. [2] Although the term "molecular motor" has traditionally referred to a naturally occurring protein that induces motion (via protein dynamics), some groups also use the term when referring to non-biological, non-peptide synthetic motors.
This change of states influences the properties of the molecule according to the state it occupies at the moment. Unlike a molecular motor, any mechanical work done due to the motion in a switch is generally undone once the molecule returns to its original state unless it is part of a larger motor-like system.
Many of these molecular motors are ubiquitous in both prokaryotic and eukaryotic cells, although some, such as those involved with cytoskeletal elements or chromatin, are unique to eukaryotes. The motor protein prestin, [14] expressed in mammalian cochlear outer hair cells, produces mechanical amplification in the cochlea. It is a direct ...
The term "Brownian motor" was originally invented by Swiss theoretical physicist Peter Hänggi in 1995. [3] The Brownian motor, like the phenomenon of Brownian motion that underpinned its underlying theory, was also named after 19th century Scottish botanist Robert Brown, who, while looking through a microscope at pollen of the plant Clarkia pulchella immersed in water, famously described the ...
The single-molecule electric motor is an electrically operated synthetic molecular motor made from a single butyl methyl sulphide molecule. [1] The molecule is adsorbed onto a copper (111) single-crystal piece by chemisorption. [1]
Motor proteins are a class of molecular motors that can move along the cytoplasm of animal cells. They convert chemical energy into mechanical work by the hydrolysis of ATP . A good example is the muscle protein myosin which "motors" the contraction of muscle fibers in animals.
A proposed branch of research is the integration of molecular motor proteins found in living cells into molecular motors implanted in artificial devices. Such a motor protein would be able to move a "cargo" within that device, via protein dynamics , similarly to how kinesin moves various molecules along tracks of microtubules inside cells.