Search results
Results From The WOW.Com Content Network
In an oxygen system the presence of oxygen is implied, and in a sufficiently high partial pressure of oxygen, most materials can be considered fuel. Potential ignition sources are present in almost all oxygen systems, but fire hazards can be mitigated by controlling the risk factors associated with the oxygen, fuel, or heat, which can limit the ...
Liquid oxygen has a clear cyan color and is strongly paramagnetic: it can be suspended between the poles of a powerful horseshoe magnet. [2] Liquid oxygen has a density of 1.141 kg/L (1.141 g/ml), slightly denser than liquid water, and is cryogenic with a freezing point of 54.36 K (−218.79 °C; −361.82 °F) and a boiling point of 90.19 K (−182.96 °C; −297.33 °F) at 1 bar (14.5 psi).
Excessive exposure to oxygen can lead to oxygen toxicity, also known as oxygen toxicity syndrome, oxygen intoxication, and oxygen poisoning.There are two main ways in which oxygen toxicity can occur: exposure to significantly elevated partial pressures of oxygen for a short period of time (acute oxygen toxicity), or exposure to more modest elevations in oxygen partial pressures but for a ...
Liquid oxygen may also be condensed from air using liquid nitrogen as a coolant. [54] Liquid oxygen is a highly reactive substance and must be segregated from combustible materials. [54] The spectroscopy of molecular oxygen is associated with the atmospheric processes of aurora and airglow. [55]
Most humans can function at rest with an oxygen level of 15% at one atmosphere pressure; [1] a fuel such as methane is combustable down to 12% oxygen in nitrogen. A small room of 10 meter 3 has 2.08 meter 3 (2080 liters) or 2.99 kg of oxygen which would occupy 2.62 liters if it was liquid. [2]
Oxygen toxicity is a condition resulting from the harmful effects of breathing molecular oxygen (O 2) at increased partial pressures.Severe cases can result in cell damage and death, with effects most often seen in the central nervous system, lungs, and eyes.
A cryogenic gas plant is an industrial facility that creates molecular oxygen, molecular nitrogen, argon, krypton, helium, and xenon at relatively high purity. [1] As air is made up of nitrogen, the most common gas in the atmosphere, at 78%, with oxygen at 19%, and argon at 1%, with trace gasses making up the rest, cryogenic gas plants separate air inside a distillation column at cryogenic ...
In hazard identification, sources of data on the risks associated with prospective hazards are identified. For instance, if a site is known to be contaminated with a variety of industrial pollutants, hazard identification will determine which of these chemicals could result in adverse human health effects, and what effects they could cause ...