Ads
related to: homology vs analogy worksheet answers sheet
Search results
Results From The WOW.Com Content Network
The term "homology" was first used in biology by the anatomist Richard Owen in 1843 when studying the similarities of vertebrate fins and limbs, defining it as the "same organ in different animals under every variety of form and function", [6] and contrasting it with the matching term "analogy" which he used to describe different structures ...
Lastly, since there are many homology theories for topological spaces that produce the same answer, one also often speaks of the homology of a topological space. (This latter notion of homology admits more intuitive descriptions for 1- or 2-dimensional topological spaces, and is sometimes referenced in popular mathematics .)
Sequence homology is the biological homology between DNA, RNA, or protein sequences, defined in terms of shared ancestry in the evolutionary history of life. Two segments of DNA can have shared ancestry because of three phenomena: either a speciation event (orthologs), or a duplication event (paralogs), or else a horizontal (or lateral) gene ...
Cellular homology can also be used to calculate the homology of the genus g surface. The fundamental polygon of Σ g {\displaystyle \Sigma _{g}} is a 4 n {\displaystyle 4n} -gon which gives Σ g {\displaystyle \Sigma _{g}} a CW-structure with one 2-cell, 2 n {\displaystyle 2n} 1-cells, and one 0-cell.
For all integers r ≥ r 0, an object E r, called a sheet (as in a sheet of paper), or sometimes a page or a term, Endomorphisms d r : E r → E r satisfying d r o d r = 0, called boundary maps or differentials, Isomorphisms of E r+1 with H(E r), the homology of E r with respect to d r. The E 2 sheet of a cohomological spectral sequence
Homology (anthropology), analogy between human beliefs, practices or artifacts owing to genetic or historical connections; Homology (psychology), behavioral characteristics that have common origins in either evolution or development
The reduced homology should replace this group, of rank r say, by one of rank r − 1. Otherwise the homology groups should remain unchanged. An ad hoc way to do this is to think of a 0-th homology class not as a formal sum of connected components, but as such a formal sum where the coefficients add up to zero.
In algebraic topology, a branch of mathematics, the (singular) homology of a topological space relative to a subspace is a construction in singular homology, for pairs of spaces. The relative homology is useful and important in several ways. Intuitively, it helps determine what part of an absolute homology group comes from which subspace.