When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Internal energy - Wikipedia

    en.wikipedia.org/wiki/Internal_energy

    The internal energy depends only on the internal state of the system and not on the particular choice from many possible processes by which energy may pass into or out of the system. It is a state variable, a thermodynamic potential, and an extensive property. [5] Thermodynamics defines internal energy macroscopically, for the body as a whole.

  3. Laws of thermodynamics - Wikipedia

    en.wikipedia.org/wiki/Laws_of_thermodynamics

    The concept of internal energy and its relationship to temperature. If a system has a definite temperature, then its total energy has three distinguishable components, termed kinetic energy (energy due to the motion of the system as a whole), potential energy (energy resulting from an externally imposed force field), and internal energy. The ...

  4. List of thermodynamic properties - Wikipedia

    en.wikipedia.org/wiki/List_of_thermodynamic...

    Systems do not contain work, but can perform work, and likewise, in formal thermodynamics, systems do not contain heat, but can transfer heat. Informally, however, a difference in the energy of a system that occurs solely because of a difference in its temperature is commonly called heat , and the energy that flows across a boundary as a result ...

  5. Thermodynamic state - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_state

    They are uniquely determined by the thermodynamic state as it has been identified by the original state variables. There are many such state functions. Examples are internal energy, enthalpy, Helmholtz free energy, Gibbs free energy, thermodynamic temperature, and entropy. For a given body, of a given chemical constitution, when its ...

  6. Fundamental thermodynamic relation - Wikipedia

    en.wikipedia.org/wiki/Fundamental_thermodynamic...

    The first law of thermodynamics is essentially a definition of heat, i.e. heat is the change in the internal energy of a system that is not caused by a change of the external parameters of the system. However, the second law of thermodynamics is not a defining relation for the entropy.

  7. Second law of thermodynamics - Wikipedia

    en.wikipedia.org/wiki/Second_law_of_thermodynamics

    According to the first law of thermodynamics, the change dU in the internal energy of the sub-system is the sum of the heat δq added to the sub-system, minus any work δw done by the sub-system, plus any net chemical energy entering the sub-system d Σμ iR N i, so that:

  8. Conjugate variables (thermodynamics) - Wikipedia

    en.wikipedia.org/wiki/Conjugate_variables...

    In thermodynamics, the internal energy of a system is expressed in terms of pairs of conjugate variables such as temperature and entropy, pressure and volume, or chemical potential and particle number. In fact, all thermodynamic potentials are expressed in terms of conjugate pairs.

  9. Thermodynamic databases for pure substances - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_databases...

    For example, values of the Gibbs energy obtained from high-temperature equilibrium emf methods must be identical to those calculated from calorimetric measurements of the enthalpy and entropy values. The database provider must use recognized data analysis procedures to resolve differences between data obtained by different types of experiments.