When.com Web Search

  1. Ad

    related to: converse and inverse error formula worksheet 6th

Search results

  1. Results From The WOW.Com Content Network
  2. Affirming the consequent - Wikipedia

    en.wikipedia.org/wiki/Affirming_the_consequent

    In propositional logic, affirming the consequent (also known as converse error, fallacy of the converse, or confusion of necessity and sufficiency) is a formal fallacy (or an invalid form of argument) that is committed when, in the context of an indicative conditional statement, it is stated that because the consequent is true, therefore the ...

  3. Confusion of the inverse - Wikipedia

    en.wikipedia.org/wiki/Confusion_of_the_inverse

    Confusion of the inverse, also called the conditional probability fallacy or the inverse fallacy, is a logical fallacy whereupon a conditional probability is equated with its inverse; that is, given two events A and B, the probability of A happening given that B has happened is assumed to be about the same as the probability of B given A, when there is actually no evidence for this assumption.

  4. Converse (logic) - Wikipedia

    en.wikipedia.org/wiki/Converse_(logic)

    In logic and mathematics, the converse of a categorical or implicational statement is the result of reversing its two constituent statements. For the implication P → Q, the converse is Q → P. For the categorical proposition All S are P, the converse is All P are S. Either way, the truth of the converse is generally independent from that of ...

  5. Inverse (logic) - Wikipedia

    en.wikipedia.org/wiki/Inverse_(logic)

    The inverse and the converse of a conditional are logically equivalent to each other, just as the conditional and its contrapositive are logically equivalent to each other. [1] But the inverse of a conditional cannot be inferred from the conditional itself (e.g., the conditional might be true while its inverse might be false [2]). For example ...

  6. Contraposition - Wikipedia

    en.wikipedia.org/wiki/Contraposition

    The inverse is "If an object is not red, then it does not have color." An object which is blue is not red, and still has color. Therefore, in this case the inverse is false. The converse is "If an object has color, then it is red." Objects can have other colors, so the converse of our statement is false.

  7. Denying the antecedent - Wikipedia

    en.wikipedia.org/wiki/Denying_the_antecedent

    One way to demonstrate the invalidity of this argument form is with an example that has true premises but an obviously false conclusion. For example:

  8. Mathematical fallacy - Wikipedia

    en.wikipedia.org/wiki/Mathematical_fallacy

    In mathematics, certain kinds of mistaken proof are often exhibited, and sometimes collected, as illustrations of a concept called mathematical fallacy.There is a distinction between a simple mistake and a mathematical fallacy in a proof, in that a mistake in a proof leads to an invalid proof while in the best-known examples of mathematical fallacies there is some element of concealment or ...

  9. Converse relation - Wikipedia

    en.wikipedia.org/wiki/Converse_relation

    Although many functions do not have an inverse, every relation does have a unique converse. The unary operation that maps a relation to the converse relation is an involution , so it induces the structure of a semigroup with involution on the binary relations on a set, or, more generally, induces a dagger category on the category of relations ...