When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Definite matrix - Wikipedia

    en.wikipedia.org/wiki/Definite_matrix

    In mathematics, a symmetric matrix with real entries is positive-definite if the real number is positive for every nonzero real column vector, where is the row vector transpose of . [1] More generally, a Hermitian matrix (that is, a complex matrix equal to its conjugate transpose) is positive-definite if the real number is positive for every nonzero complex column vector , where denotes the ...

  3. Positive-definite kernel - Wikipedia

    en.wikipedia.org/wiki/Positive-definite_kernel

    In operator theory, a branch of mathematics, a positive-definite kernel is a generalization of a positive-definite function or a positive-definite matrix. It was first introduced by James Mercer in the early 20th century, in the context of solving integral operator equations. Since then, positive-definite functions and their various analogues ...

  4. Sylvester's criterion - Wikipedia

    en.wikipedia.org/wiki/Sylvester's_criterion

    In mathematics, Sylvester’s criterion is a necessary and sufficient criterion to determine whether a Hermitian matrix is positive-definite. Sylvester's criterion states that a n × n Hermitian matrix M is positive-definite if and only if all the following matrices have a positive determinant: the upper left 1-by-1 corner of M,

  5. Positive definite matrices - Wikipedia

    en.wikipedia.org/?title=Positive_definite...

    Pages for logged out editors learn more. Contributions; Talk; Positive definite matrices

  6. Positive definiteness - Wikipedia

    en.wikipedia.org/wiki/Positive_definiteness

    In mathematics, positive definiteness is a property of any object to which a bilinear form or a sesquilinear form may be naturally associated, which is positive-definite. See, in particular: Positive-definite bilinear form; Positive-definite function; Positive-definite function on a group; Positive-definite functional; Positive-definite kernel

  7. Matrix (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Matrix_(mathematics)

    For elliptic partial differential equations this matrix is positive definite, which has a decisive influence on the set of possible solutions of the equation in question. [86] The finite element method is an important numerical method to solve partial differential equations, widely applied in simulating complex physical systems. It attempts to ...

  8. Square root of a matrix - Wikipedia

    en.wikipedia.org/wiki/Square_root_of_a_matrix

    The principal square root of a real positive semidefinite matrix is real. [3] The principal square root of a positive definite matrix is positive definite; more generally, the rank of the principal square root of A is the same as the rank of A. [3] The operation of taking the principal square root is continuous on this set of matrices. [4]

  9. Positive-definite function - Wikipedia

    en.wikipedia.org/wiki/Positive-definite_function

    One strategy is to define a correlation matrix A which is then multiplied by a scalar to give a covariance matrix: this must be positive-definite. Bochner's theorem states that if the correlation between two points is dependent only upon the distance between them (via function f ), then function f must be positive-definite to ensure the ...