Search results
Results From The WOW.Com Content Network
An example of a reflexive relation is the relation "is equal to" on the set of real numbers, since every real number is equal to itself. A reflexive relation is said to have the reflexive property or is said to possess reflexivity. Along with symmetry and transitivity, reflexivity is one of three properties defining equivalence relations.
If a relation is reflexive, irreflexive, symmetric, antisymmetric, asymmetric, transitive, total, trichotomous, a partial order, total order, strict weak order, total preorder (weak order), or an equivalence relation, then so too are its restrictions. However, the transitive closure of a restriction is a subset of the restriction of the ...
A relation is called reflexive if it relates every element of to itself. For example, if X {\displaystyle X} is a set of distinct numbers and x R y {\displaystyle xRy} means " x {\displaystyle x} is less than y {\displaystyle y} ", then the reflexive closure of R {\displaystyle R} is the relation " x {\displaystyle x} is less than or equal to y ...
A reflexive and symmetric relation is a dependency relation (if finite), and a tolerance relation if infinite. A preorder is reflexive and transitive. A congruence relation is an equivalence relation whose domain X {\displaystyle X} is also the underlying set for an algebraic structure , and which respects the additional structure.
A binary relation that is antisymmetric, transitive, and reflexive (but not necessarily total) is a partial order. A group with a compatible total order is a totally ordered group. There are only a few nontrivial structures that are (interdefinable as) reducts of a total order. Forgetting the orientation results in a betweenness relation.
A relation is transitive if it is closed under this operation, and the transitive closure of a relation is its closure under this operation. A preorder is a relation that is reflective and transitive. It follows that the reflexive transitive closure of a relation is the smallest preorder containing it
A binary relation on a set is formally defined as a set of ordered pairs (,) of elements of , and (,) is often abbreviated as .. A relation is reflexive if holds for every element ; it is transitive if imply for all ,,; it is antisymmetric if imply = for all ,; and it is a connex relation if holds for all ,.
In the mathematics of binary relations, the composition of relations is the forming of a new binary relation R ; S from two given binary relations R and S. In the calculus of relations , the composition of relations is called relative multiplication , [ 1 ] and its result is called a relative product .