Ad
related to: nucleosynthesis of stars and sun energy transfer function in photosynthesis
Search results
Results From The WOW.Com Content Network
This core convection occurs in stars where the CNO cycle contributes more than 20% of the total energy. As the star ages and the core temperature increases, the region occupied by the convection zone slowly shrinks from 20% of the mass down to the inner 8% of the mass. [25] The Sun produces on the order of 1% of its energy from the CNO cycle.
The neutrinos escape from the star carrying away some energy. [2] One nucleus goes on to become carbon, nitrogen, and oxygen isotopes through a number of transformations in a repeating cycle. Overview of the CNO-I Cycle. The proton–proton chain is more prominent in stars the mass of the Sun or less.
The total energy yield of one whole chain is 26.73 MeV. Energy released as gamma rays will interact with electrons and protons and heat the interior of the Sun. Also kinetic energy of fusion products (e.g. of the two protons and the 4 2 He from the p–p I reaction) adds energy to the plasma in the Sun.
The first direct proof that nucleosynthesis occurs in stars was the astronomical observation that interstellar gas has become enriched with heavy elements as time passed. As a result, stars that were born from it late in the galaxy, formed with much higher initial heavy element abundances than those that had formed earlier.
Comparison of the energy output (ε) of proton–proton (PP), CNO and Triple-α fusion processes at different temperatures (T). The dashed line shows the combined energy generation of the PP and CNO processes within a star. Helium accumulates in the cores of stars as a result of the proton–proton chain reaction and the carbon–nitrogen ...
The free energy created is then used, via a chain of nearby electron acceptors, for a transfer of hydrogen atoms (as protons and electrons) from H 2 O or hydrogen sulfide towards carbon dioxide, eventually producing glucose. These electron transfer steps ultimately result in the conversion of the energy of photons to chemical energy.
The derivation showed that stars can be approximately modelled as ideal gases, which was a new, somewhat radical idea at the time. What follows is a somewhat more modern approach based on the same principles. An important factor controlling the luminosity of a star (energy emitted per unit time) is the rate of energy dissipation through its bulk.
The following is a breakdown of the energetics of the photosynthesis process from Photosynthesis by Hall and Rao: [6]. Starting with the solar spectrum falling on a leaf, 47% lost due to photons outside the 400–700 nm active range (chlorophyll uses photons between 400 and 700 nm, extracting the energy of one 700 nm photon from each one)