Search results
Results From The WOW.Com Content Network
This is a list of articles about prime numbers. A prime number (or prime) is a natural number greater than 1 that has no positive divisors other than 1 and itself. By Euclid's theorem, there are an infinite number of prime numbers. Subsets of the prime numbers may be generated with various formulas for primes.
Mersenne primes and perfect numbers are two deeply interlinked types of natural numbers in number theory. Mersenne primes, named after the friar Marin Mersenne, are prime numbers that can be expressed as 2 p − 1 for some positive integer p. For example, 3 is a Mersenne prime as it is a prime number and is expressible as 2 2 − 1.
In mathematics, a Mersenne prime is a prime number that is one less than a power of two. That is, it is a prime number of the form M n = 2 n − 1 for some integer n. They are named after Marin Mersenne, a French Minim friar, who studied them in the early 17th century. If n is a composite number then so is 2 n − 1.
A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime because the only ways of writing it as a product, 1 × 5 or 5 × 1, involve 5 itself. However, 4 is composite because it is a ...
An odd prime number p is defined to be regular if it does not divide the class number of the pth cyclotomic field Q(ζ p), where ζ p is a primitive pth root of unity. The prime number 2 is often considered regular as well. The class number of the cyclotomic field is the number of ideals of the ring of integers Z(ζ p) up to equivalence.
Ω(n), the prime omega function, is the number of prime factors of n counted with multiplicity (so it is the sum of all prime factor multiplicities). A prime number has Ω(n) = 1. The first: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37 (sequence A000040 in the OEIS). There are many special types of prime numbers. A composite number has Ω(n) > 1.
All primes greater than or equal to 73 are non-supersingular, while 37, on the other hand, is the smallest prime number that is not supersingular. [22] F 1 {\displaystyle \mathrm {F_{1}} } contains a total of 194 conjugacy classes that involve 73 distinct orders (without including multiplicities over which letters run).
The smallest prime number () with > is (), or 30 32 + 1. Besides, we can define "half generalized Fermat numbers" for an odd base, a half generalized Fermat number to base a (for odd a ) is a 2 n + 1 2 {\displaystyle {\frac {a^{2^{n}}\!+1}{2}}} , and it is also to be expected that there will be only finitely many half generalized Fermat primes ...