Search results
Results From The WOW.Com Content Network
the groundwater is flowing slowly (Reynolds number less than unity), and the hydraulic conductivity ( K ) is an isotropic scalar . Despite these large assumptions, the groundwater flow equation does a good job of representing the distribution of heads in aquifers due to a transient distribution of sources and sinks.
Q is the total groundwater discharge ([L 3 ·T −1]; m 3 /s), K is the hydraulic conductivity of the aquifer ([L·T −1]; m/s), dh/dl is the hydraulic gradient ([L·L −1]; unitless), and A is the area which the groundwater is flowing through ([L 2]; m 2) For example, this can be used to determine the flow rate of water flowing along a plane ...
Darcy's law is an equation that describes the flow of a fluid through a porous medium and through a Hele-Shaw cell.The law was formulated by Henry Darcy based on results of experiments [1] on the flow of water through beds of sand, forming the basis of hydrogeology, a branch of earth sciences.
In fluid dynamics, head is a concept that relates the energy in an incompressible fluid to the height of an equivalent static column of that fluid. From Bernoulli's principle, the total energy at a given point in a fluid is the kinetic energy associated with the speed of flow of the fluid, plus energy from static pressure in the fluid, plus energy from the height of the fluid relative to an ...
In hydrology, discharge is the volumetric flow rate (volume per time, in units of m 3 /h or ft 3 /h) of a stream.It equals the product of average flow velocity (with dimension of length per time, in m/h or ft/h) and the cross-sectional area (in m 2 or ft 2). [1]
Groundwater is stored in and moves slowly (compared to surface runoff in temperate conditions and watercourses) through layers or zones of soil, sand and rocks: aquifers. The rate of groundwater flow depends on the permeability (the size of the spaces in the soil or rocks and how well the spaces are connected) and the hydraulic head (water ...
In steady state, the level of the water table remains constant and the discharge rate (Q) equals the rate of groundwater recharge (R), i.e. the amount of water entering the groundwater through the watertable per unit of time.
The energy balance of groundwater flow can be applied to flow of groundwater to subsurface drains. [2] The computer program EnDrain [3] compares the outcome of the traditional drain spacing equation, based on Darcy's law together with the continuity equation (i.e. conservation of mass), with the solution obtained by the energy balance and it can be seen that drain spacings are wider in the ...