Search results
Results From The WOW.Com Content Network
The application of kinetic theory to ideal gases makes the following assumptions: The gas consists of very small particles. This smallness of their size is such that the sum of the volume of the individual gas molecules is negligible compared to the volume of the container of the gas.
Maxwell–Boltzmann distribution is a specific application of Maxwell–Boltzmann statistics to the kinetic energies of gas particles. The distribution of velocities (or speeds) of particles in an ideal gas follows from the statistical assumption that the energy levels of a gas molecule are given by its kinetic energy:
At the molecular level, gas dynamics is a study of the kinetic theory of gases, often leading to the study of gas diffusion, statistical mechanics, chemical thermodynamics and non-equilibrium thermodynamics. [2] Gas dynamics is synonymous with aerodynamics when the gas field is air and the subject of study is flight.
This article inspired further work based on the twin ideas that substances are composed of indivisible particles, and that heat is a consequence of the particle motion; movement that evolves in accordance with Newton's laws. The work, known as the kinetic theory of gases, was done principally by Clausius, James Clerk Maxwell, and Ludwig Boltzmann.
According to the assumptions of the kinetic theory of ideal gases, one can consider that there are no intermolecular attractions between the molecules, or atoms, of an ideal gas. In other words, its potential energy is zero. Hence, all the energy possessed by the gas is the kinetic energy of the molecules, or atoms, of the gas.
A gas is said to be in local equilibrium if it satisfies this equation. [4] The assumption of local equilibrium leads directly to the Euler equations, which describe fluids without dissipation, i.e. with thermal conductivity and viscosity equal to . The primary goal of Chapman–Enskog theory is to systematically obtain generalizations of the ...
Two major assumptions are used in this method: The compound vapor behaves as an ideal gas (follows all 5 postulates of the kinetic theory of gases); Either the volume of the vessel does not vary significantly between room temperature and the working temperature, or the volume of the vessel may be accurately determined at the working temperature
In the kinetic theory of gases in physics, the molecular chaos hypothesis (also called Stosszahlansatz in the writings of Paul and Tatiana Ehrenfest [1] [2]) is the assumption that the velocities of colliding particles are uncorrelated, and independent of position.