Search results
Results From The WOW.Com Content Network
Euler substitution is a method for evaluating integrals of the form (, + +), where is a rational function of and + +. In such cases, the integrand can be changed to a rational function by using the substitutions of Euler.
In calculus, integration by substitution, also known as u-substitution, reverse chain rule or change of variables, [1] is a method for evaluating integrals and antiderivatives. It is the counterpart to the chain rule for differentiation , and can loosely be thought of as using the chain rule "backwards."
The theorem also holds if balls are replaced, in the definition of the derivative, by families of sets with diameter tending to zero satisfying the Lebesgue's regularity condition, defined above as family of sets with bounded eccentricity. This follows since the same substitution can be made in the statement of the Vitali covering lemma.
Integration using Euler's formula – Use of complex numbers to evaluate integrals; Liouville's theorem (differential algebra) – Says when antiderivatives of elementary functions can be expressed as elementary functions; List of limits; List of mathematical identities; List of mathematical series
The essential process of the above formula can be summarized in a table; the resulting method is called "tabular integration" [5] and was featured in the film Stand and Deliver (1988). [6] For example, consider the integral
The Lebesgue integral, named after French mathematician Henri Lebesgue, is one way to make this concept rigorous and to extend it to more general functions. The Lebesgue integral is more general than the Riemann integral, which it largely replaced in mathematical analysis since the first half of the 20th century. It can accommodate functions ...
This formula is the general form of the Leibniz integral rule and can be derived using the fundamental theorem of calculus. The (first) fundamental theorem of calculus is just the particular case of the above formula where a ( x ) = a ∈ R {\displaystyle a(x)=a\in \mathbb {R} } is constant, b ( x ) = x , {\displaystyle b(x)=x,} and f ( x , t ...
In mathematics, Fatou's lemma establishes an inequality relating the Lebesgue integral of the limit inferior of a sequence of functions to the limit inferior of integrals of these functions. The lemma is named after Pierre Fatou. Fatou's lemma can be used to prove the Fatou–Lebesgue theorem and Lebesgue's dominated convergence theorem.