When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Euler substitution - Wikipedia

    en.wikipedia.org/wiki/Euler_substitution

    The substitutions of Euler can be generalized by allowing the use of imaginary numbers. For example, in the integral +, the substitution + = + can be used. Extensions to the complex numbers allows us to use every type of Euler substitution regardless of the coefficients on the quadratic.

  3. Integration by substitution - Wikipedia

    en.wikipedia.org/wiki/Integration_by_substitution

    For Lebesgue measurable functions, the theorem can be stated in the following form: [6] Theorem — Let U be a measurable subset of R n and φ : U → R n an injective function , and suppose for every x in U there exists φ ′( x ) in R n , n such that φ ( y ) = φ ( x ) + φ′ ( x )( y − x ) + o (‖ y − x ‖) as y → x (here o is ...

  4. Pushforward measure - Wikipedia

    en.wikipedia.org/wiki/Pushforward_measure

    A natural "Lebesgue measure" on the unit circle S 1 (here thought of as a subset of the complex plane C) may be defined using a push-forward construction and Lebesgue measure λ on the real line R. Let λ also denote the restriction of Lebesgue measure to the interval [0, 2 π ) and let f : [0, 2 π ) → S 1 be the natural bijection defined by ...

  5. Lebesgue integral - Wikipedia

    en.wikipedia.org/wiki/Lebesgue_integral

    The Lebesgue integral, named after French mathematician Henri Lebesgue, is one way to make this concept rigorous and to extend it to more general functions. The Lebesgue integral is more general than the Riemann integral, which it largely replaced in mathematical analysis since the first half of the 20th century. It can accommodate functions ...

  6. Integration by parts - Wikipedia

    en.wikipedia.org/wiki/Integration_by_parts

    Lebesgue integration; Contour integration; Integral of inverse functions; Integration by; Parts; Discs; Cylindrical shells; Substitution (trigonometric, tangent half-angle, Euler) Euler's formula; Partial fractions (Heaviside's method) Changing order; Reduction formulae; Differentiating under the integral sign; Risch algorithm

  7. Lebesgue differentiation theorem - Wikipedia

    en.wikipedia.org/wiki/Lebesgue_differentiation...

    The theorem also holds if balls are replaced, in the definition of the derivative, by families of sets with diameter tending to zero satisfying the Lebesgue's regularity condition, defined above as family of sets with bounded eccentricity. This follows since the same substitution can be made in the statement of the Vitali covering lemma.

  8. Lebesgue measure - Wikipedia

    en.wikipedia.org/wiki/Lebesgue_measure

    A Lebesgue-measurable set can be "squeezed" between a containing G δ set and a contained F σ. I.e, if A is Lebesgue-measurable then there exist a G δ set G and an F σ F such that G ⊇ A ⊇ F and λ(G \ A) = λ(A \ F) = 0. Lebesgue measure is both locally finite and inner regular, and so it is a Radon measure.

  9. Differentiation of integrals - Wikipedia

    en.wikipedia.org/wiki/Differentiation_of_integrals

    The result for Lebesgue measure turns out to be a special case of the following result, which is based on the Besicovitch covering theorem: if μ is any locally finite Borel measure on R n and f : R n → R is locally integrable with respect to μ, then (()) () = for μ-almost all points x ∈ R n.