When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Spectrochemical series - Wikipedia

    en.wikipedia.org/wiki/Spectrochemical_series

    A spectrochemical series is a list of ligands ordered by ligand "strength", and a list of metal ions based on oxidation number, group and element.For a metal ion, the ligands modify the difference in energy Δ between the d orbitals, called the ligand-field splitting parameter in ligand field theory, or the crystal-field splitting parameter in crystal field theory.

  3. Metal carbonyl - Wikipedia

    en.wikipedia.org/wiki/Metal_carbonyl

    The CO ligand is often ... NO is a stronger π-acceptor than CO. Well known ... which was only superseded in 1996 by more modern methods based on the ...

  4. Cis effect - Wikipedia

    en.wikipedia.org/wiki/Cis_effect

    CO is a well-known strong pi-accepting ligand in organometallic chemistry that will labilize in the cis position when adjacent to ligands due to steric and electronic effects. The system most often studied for the cis effect is an octahedral complex M(CO) 5 X where X is the ligand that will labilize a CO ligand cis to it.

  5. Ligand - Wikipedia

    en.wikipedia.org/wiki/Ligand

    In cases where the ligand has low energy LUMO, such orbitals also participate in the bonding. The metal–ligand bond can be further stabilised by a formal donation of electron density back to the ligand in a process known as back-bonding. In this case a filled, central-atom-based orbital donates density into the LUMO of the (coordinated) ligand.

  6. Ligand field theory - Wikipedia

    en.wikipedia.org/wiki/Ligand_field_theory

    The greater stabilization that results from metal-to-ligand bonding is caused by the donation of negative charge away from the metal ion, towards the ligands. This allows the metal to accept the σ bonds more easily. The combination of ligand-to-metal σ-bonding and metal-to-ligand π-bonding is a synergic effect, as each enhances the other.

  7. Spin states (d electrons) - Wikipedia

    en.wikipedia.org/wiki/Spin_states_(d_electrons)

    The higher the oxidation state of the metal, the stronger the ligand field that is created. In the event that there are two metals with the same d electron configuration, the one with the higher oxidation state is more likely to be low spin than the one with the lower oxidation state; for example, Fe 2+ and Co 3+ are both d 6 ; however, the ...

  8. Alkaline earth octacarbonyl complex - Wikipedia

    en.wikipedia.org/wiki/Alkaline_earth_octa...

    As depicted in the molecular orbital diagram above, the computed electronic structure contains a purely ligand-based orbital with a 2u symmetry. [1] Invoking this ligand-only orbital allows for satisfaction of the 18-electron rule in M(CO) 8 complexes, and is stabilized by the field effect of the metal on the ligand cage. [14]

  9. 18-electron rule - Wikipedia

    en.wikipedia.org/wiki/18-electron_rule

    Compounds that obey the 18-electron rule are typically "exchange inert". Examples include [Co(NH 3) 6]Cl 3, Mo(CO) 6, and [Fe(CN) 6] 4−. In such cases, in general ligand exchange occurs via dissociative substitution mechanisms, wherein the rate of reaction is determined by the rate of dissociation of a ligand. On the other hand, 18-electron ...