When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Magnetic dipole–dipole interaction - Wikipedia

    en.wikipedia.org/wiki/Magnetic_dipoledipole...

    Magnetic dipoledipole interaction, also called dipolar coupling, refers to the direct interaction between two magnetic dipoles. Roughly speaking, the magnetic field of a dipole goes as the inverse cube of the distance, and the force of its magnetic field on another dipole goes as the first derivative of the magnetic field. It follows that ...

  3. Quantum Heisenberg model - Wikipedia

    en.wikipedia.org/wiki/Quantum_Heisenberg_model

    It is related to the prototypical Ising model, where at each site of a lattice, a spin {} represents a microscopic magnetic dipole to which the magnetic moment is either up or down. Except the coupling between magnetic dipole moments, there is also a multipolar version of Heisenberg model called the multipolar exchange interaction .

  4. File:Spin orbit coupling dispersion relation.pdf - Wikipedia

    en.wikipedia.org/wiki/File:Spin_orbit_coupling...

    Box A has no coupling. The dispersion relation shows 2 shifted free space dispersion relations. Box B shows how the gap at k=0 opens for weak coupling. Box C shows the strong coupling limit where the double degenerate minima in the first band merge into a single ground state at k=0.

  5. Solid-state nuclear magnetic resonance - Wikipedia

    en.wikipedia.org/wiki/Solid-state_nuclear...

    Solid-state 900 MHz (21.1 T [1]) NMR spectrometer at the Canadian National Ultrahigh-field NMR Facility for Solids. Solid-state nuclear magnetic resonance (ssNMR) is a spectroscopy technique used to characterize atomic-level structure and dynamics in solid materials. ssNMR spectra are broader due to nuclear spin interactions which can be categorized as dipolar coupling, chemical shielding ...

  6. Nuclear magnetic resonance crystallography - Wikipedia

    en.wikipedia.org/wiki/Nuclear_magnetic_resonance...

    The spin interaction that is usually employed for structural analyses via solid state NMR spectroscopy is the magnetic dipolar interaction. [8] Additional knowledge about other interactions within the studied system like the chemical shift or the electric quadrupole interaction can be helpful as well, and in some cases solely the chemical shift has been employed as e.g. for zeolites. [9]

  7. Spin–orbit interaction - Wikipedia

    en.wikipedia.org/wiki/Spin–orbit_interaction

    A key example of this phenomenon is the spin–orbit interaction leading to shifts in an electron's atomic energy levels, due to electromagnetic interaction between the electron's magnetic dipole, its orbital motion, and the electrostatic field of the positively charged nucleus.

  8. Nuclear Overhauser effect - Wikipedia

    en.wikipedia.org/wiki/Nuclear_Overhauser_effect

    The most important example in organic chemistry is observation of 13 C while decoupling 1 H, which also saturates the 1 J resonances. The value of γ S / γ I is close to 4, which gives a maximum NOE enhancement of 200% yielding resonances 3 times as strong as they would be without NOE. [ 15 ]

  9. J-coupling - Wikipedia

    en.wikipedia.org/wiki/J-coupling

    In nuclear chemistry and nuclear physics, J-couplings (also called spin-spin coupling or indirect dipoledipole coupling) are mediated through chemical bonds connecting two spins. It is an indirect interaction between two nuclear spins that arises from hyperfine interactions between the nuclei and local electrons. [ 1 ]