When.com Web Search

  1. Ad

    related to: laplace operators table calculator with solution set of equations examples

Search results

  1. Results From The WOW.Com Content Network
  2. Laplace operator - Wikipedia

    en.wikipedia.org/wiki/Laplace_operator

    Solutions of the Laplace equation, i.e. functions whose Laplacian is identically zero, thus represent possible equilibrium densities under diffusion. The Laplace operator itself has a physical interpretation for non-equilibrium diffusion as the extent to which a point represents a source or sink of chemical concentration, in a sense made ...

  3. Laplace's equation - Wikipedia

    en.wikipedia.org/wiki/Laplace's_equation

    In mathematics and physics, Laplace's equation is a second-order partial differential equation named after Pierre-Simon Laplace, who first studied its properties.This is often written as = or =, where = = is the Laplace operator, [note 1] is the divergence operator (also symbolized "div"), is the gradient operator (also symbolized "grad"), and (,,) is a twice-differentiable real-valued function.

  4. Green's function for the three-variable Laplace equation

    en.wikipedia.org/wiki/Green's_function_for_the...

    Using the Green's function for the three-variable Laplace operator, one can integrate the Poisson equation in order to determine the potential function. Green's functions can be expanded in terms of the basis elements (harmonic functions) which are determined using the separable coordinate systems for the linear partial differential equation ...

  5. Infinity Laplacian - Wikipedia

    en.wikipedia.org/wiki/Infinity_Laplacian

    In this equation, we used sup and inf instead of max and min because the graph (,) does not have to be locally finite (i.e., to have finite degrees): a key example is when () is the set of points in a domain in , and (,) if their Euclidean distance is at most . The importance of this example lies in the following.

  6. Green's function - Wikipedia

    en.wikipedia.org/wiki/Green's_function

    In other words, the solution of equation 2, u(x), can be determined by the integration given in equation 3. Although f ( x ) is known, this integration cannot be performed unless G is also known. The problem now lies in finding the Green's function G that satisfies equation 1 .

  7. Laplace operators in differential geometry - Wikipedia

    en.wikipedia.org/wiki/Laplace_operators_in...

    The Hodge Laplacian, also known as the Laplace–de Rham operator, is a differential operator acting on differential forms. (Abstractly, it is a second order operator on each exterior power of the cotangent bundle.) This operator is defined on any manifold equipped with a Riemannian- or pseudo-Riemannian metric.

  8. Elliptic operator - Wikipedia

    en.wikipedia.org/wiki/Elliptic_operator

    A solution to Laplace's equation defined on an annulus.The Laplace operator is the most famous example of an elliptic operator.. In the theory of partial differential equations, elliptic operators are differential operators that generalize the Laplace operator.

  9. Laplace–Beltrami operator - Wikipedia

    en.wikipedia.org/wiki/Laplace–Beltrami_operator

    The sign is merely a convention, and both are common in the literature. The Laplace–de Rham operator differs more significantly from the tensor Laplacian restricted to act on skew-symmetric tensors. Apart from the incidental sign, the two operators differ by a Weitzenböck identity that explicitly involves the Ricci curvature tensor.