Search results
Results From The WOW.Com Content Network
Given the length y of a chord and the length x of the sagitta, the Pythagorean theorem can be used to calculate the radius of the unique circle that will fit around the two lines: = +. Another proof of this result, which relies only on two chord properties given above, is as follows.
In the following lines, represents the radius of a circle, is its diameter, is its circumference, is the length of an arc of the circle, and is the angle which the arc subtends at the centre of the circle.
Let R be the radius of the arc which forms part of the perimeter of the segment, θ the central angle subtending the arc in radians, c the chord length, s the arc length, h the sagitta of the segment, d the apothem of the segment, and a the area of the segment.
When calculating the length of a short north-south line at the equator, the circle that best approximates that line has a radius of (which equals the meridian's semi-latus rectum), or 6335.439 km, while the spheroid at the poles is best approximated by a sphere of radius , or 6399.594 km, a 1% difference. So long as a spherical Earth is assumed ...
When the sagitta is small in comparison to the radius, it may be approximated by the formula [2] s ≈ l 2 8 r . {\displaystyle s\approx {\frac {l^{2}}{8r}}.} Alternatively, if the sagitta is small and the sagitta, radius, and chord length are known, they may be used to estimate the arc length by the formula
Earth radius (denoted as R 🜨 or R E) is the distance from the center of Earth to a point on or near its surface. Approximating the figure of Earth by an Earth spheroid (an oblate ellipsoid), the radius ranges from a maximum (equatorial radius, denoted a) of nearly 6,378 km (3,963 mi) to a minimum (polar radius, denoted b) of nearly 6,357 km (3,950 mi).
Because PQ has length y 1, OQ length x 1, and OP has length 1 as a radius on the unit circle, sin(t) = y 1 and cos(t) = x 1. Having established these equivalences, take another radius OR from the origin to a point R(−x 1,y 1) on the circle such that the same angle t is formed with the negative arm of the x-axis.
Radius of curvature and center of curvature. In differential geometry, the radius of curvature, R, is the reciprocal of the curvature. For a curve, it equals the radius of the circular arc which best approximates the curve at that point. For surfaces, the radius of curvature is the radius of a circle that best fits a normal section or ...