Search results
Results From The WOW.Com Content Network
Cyclohexanol is produced by the oxidation of cyclohexane in air, typically using cobalt catalysts: [5]. 2 C 6 H 12 + O 2 → 2 C 6 H 11 OH. This process coforms cyclohexanone, and this mixture ("KA oil" for ketone-alcohol oil) is the main feedstock for the production of adipic acid.
The Gmelin rare earths handbook lists 1522 °C and 1550 °C as two melting points given in the literature, the most recent reference [Handbook on the chemistry and physics of rare earths, vol.12 (1989)] is given with 1529 °C.
36 J/(mol·K) at –87.0 °C crystal II → crystal I Liquid properties Std enthalpy change of formation, Δ f H o liquid –156.4 kJ/mol Standard molar entropy, S o liquid: 204 J/(mol K) Enthalpy of combustion, Δ c H o –3919.6 kJ/mol Heat capacity, c p: 156 J/(mol K) or 1.85 J/(g K) Gas properties Std enthalpy change of formation, Δ f H o ...
Density (g cm-3) Boiling point (°C) K b (°C⋅kg/mol) Freezing point (°C) K f (°C⋅kg/mol) Data source; Aniline: 184.3 3.69 –5.96 –5.87 K b & K f [1] Lauric acid: 298.9 44 –3.9 Acetic acid: 1.04 117.9 3.14 16.6 –3.90 K b [1] K f [2] Acetone: 0.78 56.2 1.67 –94.8 K b [3] Benzene: 0.87 80.1 2.65 5.5 –5.12 K b & K f [2 ...
Cyclohexane has two crystalline phases. The high-temperature phase I, stable between 186 K and the melting point 280 K, is a plastic crystal, which means the molecules retain some rotational degree of freedom. The low-temperature (below 186 K) phase II is ordered.
0.8647 g/cm 3: Melting point: −17.7 °C (0.1 °F; 255.5 K) Boiling point: ... It is also prepared by alkylation of ammonia using cyclohexanol. Applications
The melting point (or, rarely, liquefaction point) of a substance is the temperature at which it changes state from solid to liquid. At the melting point the solid and liquid phase exist in equilibrium. The melting point of a substance depends on pressure and is usually specified at a standard pressure such as 1 atmosphere or 100 kPa.
Cyclohexanone is produced by the oxidation of cyclohexane in air, typically using cobalt catalysts: [11]. C 6 H 12 + O 2 → (CH 2) 5 CO + H 2 O. This process forms cyclohexanol as a by-product, and this mixture, called "KA Oil" for ketone-alcohol oil, is the main feedstock for the production of adipic acid.