Search results
Results From The WOW.Com Content Network
A map is a function, as in the association of any of the four colored shapes in X to its color in Y. In mathematics, a map or mapping is a function in its general sense. [1] These terms may have originated as from the process of making a geographical map: mapping the Earth surface to a sheet of paper. [2]
Graph of tent map function Example of iterating the initial condition x 0 = 0.4 over the tent map with μ = 1.9. In mathematics, the tent map with parameter μ is the real-valued function f μ defined by ():= {,}, the name being due to the tent-like shape of the graph of f μ.
A cobweb plot, known also as Lémeray Diagram or Verhulst diagram is a visual tool used in the dynamical systems field of mathematics to investigate the qualitative behaviour of one-dimensional iterated functions, such as the logistic map. The technique was introduced in the 1890s by E.-M. Lémeray. [1]
Given a function: from a set X (the domain) to a set Y (the codomain), the graph of the function is the set [4] = {(, ()):}, which is a subset of the Cartesian product.In the definition of a function in terms of set theory, it is common to identify a function with its graph, although, formally, a function is formed by the triple consisting of its domain, its codomain and its graph.
Self-concordant function; Semi-differentiability; Semilinear map; Set function; List of set identities and relations; Shear mapping; Shekel function; Signomial; Similarity invariance; Soboleva modified hyperbolic tangent; Softmax function; Softplus; Splitting lemma (functions) Squeeze theorem; Steiner's calculus problem; Strongly unimodal ...
Conversely, given a commutative diagram, it defines a poset category, where: the objects are the nodes, there is a morphism between any two objects if and only if there is a (directed) path between the nodes, with the relation that this morphism is unique (any composition of maps is defined by its domain and target: this is the commutativity ...
For example, consider mapping opposite points on a sphere to the same point, a continuous map from the sphere covering the projective plane. A path in the projective plane is a continuous map from the unit interval [0,1]. We can lift such a path to the sphere by choosing one of the two sphere points mapping to the first point on the path, then ...
It generalizes to n-ary functions, where the proper term is multilinear. For non-commutative rings R and S, a left R-module M and a right S-module N, a bilinear map is a map B : M × N → T with T an (R, S)-bimodule, and for which any n in N, m ↦ B(m, n) is an R-module homomorphism, and for any m in M, n ↦ B(m, n) is an S-module ...