When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Great circle - Wikipedia

    en.wikipedia.org/wiki/Great_circle

    Small circles are the spherical-geometry analog of circles in Euclidean space. Every circle in Euclidean 3-space is a great circle of exactly one sphere. The disk bounded by a great circle is called a great disk: it is the intersection of a ball and a plane passing through its center.

  3. Great-circle distance - Wikipedia

    en.wikipedia.org/wiki/Great-circle_distance

    A diagram illustrating great-circle distance (drawn in red) between two points on a sphere, P and Q. Two antipodal points, u and v are also shown. The great-circle distance, orthodromic distance, or spherical distance is the distance between two points on a sphere, measured along the great-circle arc between them. This arc is the shortest path ...

  4. Spherical geometry - Wikipedia

    en.wikipedia.org/wiki/Spherical_geometry

    However, two great circles on a plane intersect in two antipodal points, unlike coplanar lines in Elliptic geometry. In the extrinsic 3-dimensional picture, a great circle is the intersection of the sphere with any plane through the center. In the intrinsic approach, a great circle is a geodesic; a shortest path between any two of its points ...

  5. Spherical circle - Wikipedia

    en.wikipedia.org/wiki/Spherical_circle

    A great circle separates the sphere into two equal hemispheres, each with the great circle as its boundary. If a great circle passes through a point on the sphere, it also passes through the antipodal point (the unique furthest other point on the sphere). For any pair of distinct non-antipodal points, a unique great circle passes through both.

  6. Geodesic - Wikipedia

    en.wikipedia.org/wiki/Geodesic

    The most familiar examples are the straight lines in Euclidean geometry. On a sphere, the images of geodesics are the great circles. The shortest path from point A to point B on a sphere is given by the shorter arc of the great circle passing through A and B. If A and B are antipodal points, then there are infinitely many shortest paths between ...

  7. Spherical trigonometry - Wikipedia

    en.wikipedia.org/wiki/Spherical_trigonometry

    Spherical trigonometry is the branch of spherical geometry that deals with the metrical relationships between the sides and angles of spherical triangles, traditionally expressed using trigonometric functions. On the sphere, geodesics are great circles. Spherical trigonometry is of great importance for calculations in astronomy, geodesy, and ...

  8. AOL Mail

    mail.aol.com/d?reason=invalid_cred

    Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!

  9. Spherical lune - Wikipedia

    en.wikipedia.org/wiki/Spherical_lune

    The two great circles are shown as thin black lines, whereas the spherical lune (shown in green) is outlined in thick black lines. This geometry also defines lunes of greater angles: {2} π-θ, and {2} 2π-θ. In spherical geometry, a spherical lune (or biangle) is an area on a sphere bounded by two half great circles which meet at antipodal ...