Ad
related to: blood supply of kidney anatomy
Search results
Results From The WOW.Com Content Network
After filtration occurs, the blood moves through a small network of venules that converge into interlobular veins. As with the arteriole distribution, the veins follow the same pattern: the interlobular provide blood to the arcuate veins then back to the interlobar veins, which come to form the renal vein exiting the kidney for transfusion for ...
The interlobar arteries then supply blood to the arcuate arteries that run through the boundary of the cortex and the medulla. Each arcuate artery supplies several interlobular arteries that feed into the afferent arterioles that supply the glomeruli. Blood drains from the kidneys, ultimately into the inferior vena cava.
The vasa recta of the kidney, (vasa recta renis) are the straight arterioles, and the straight venules of the kidney, – a series of blood vessels in the blood supply of the kidney that enter the medulla as the straight arterioles, and leave the medulla to ascend to the cortex as the straight venules.
The arterial supply of the kidneys is variable and there may be one or more renal arteries supplying each kidney. [1] It is located above the renal vein. Supernumerary renal arteries (two or more arteries to a single kidney) are the most common renovascular anomaly, occurrence ranging from 25% to 40% of kidneys. [8]
The glomerulus (pl.: glomeruli) is a network of small blood vessels (capillaries) known as a tuft, located at the beginning of a nephron in the kidney. Each of the two kidneys contains about one million nephrons. The tuft is structurally supported by the mesangium (the space between the blood vessels), composed of intraglomerular mesangial cells.
Each glomerulus receives its blood supply from an afferent arteriole of the renal circulation. The glomerular blood pressure provides the driving force for water and solutes to be filtered out of the blood plasma, and into the interior of Bowman's capsule, called Bowman's space. Only about a fifth of the plasma is filtered in the glomerulus.
When renal blood flow is reduced (indicating hypotension) or there is a decrease in sodium or chloride ion concentration, the macula densa of the distal tubule releases prostaglandins (mainly PGI2 and PGE2) and nitric oxide, which cause the juxtaglomerular cells lining the afferent arterioles to release renin, activating the renin–angiotensin–aldosterone system, to increase blood pressure ...
Mammalian kidneys are susceptible to ischemic injury because mammals lack a renal-portal system, and as a result, vascular vasoconstriction in the glomeruli can lead to decreased blood supply to the entire kidney. The kidneys are susceptible to toxic injury, since toxins are reabsorbed in the tubules along with most of the filtered substances. [47]