When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Hamiltonian mechanics - Wikipedia

    en.wikipedia.org/wiki/Hamiltonian_mechanics

    The Hamiltonian induces a special vector field on the symplectic manifold, known as the Hamiltonian vector field. The Hamiltonian vector field induces a Hamiltonian flow on the manifold. This is a one-parameter family of transformations of the manifold (the parameter of the curves is commonly called "the time"); in other words, an isotopy of ...

  3. Symplectomorphism - Wikipedia

    en.wikipedia.org/wiki/Symplectomorphism

    In contrast, isometries in Riemannian geometry must preserve the Riemann curvature tensor, which is thus a local invariant of the Riemannian manifold. Moreover, every function H on a symplectic manifold defines a Hamiltonian vector field X H, which exponentiates to a one-parameter group of Hamiltonian diffeomorphisms. It follows that the group ...

  4. Nambu mechanics - Wikipedia

    en.wikipedia.org/wiki/Nambu_mechanics

    Such systems are also describable by conventional Hamiltonian dynamics; but their description in the framework of Nambu mechanics is substantially more elegant and intuitive, as all invariants enjoy the same geometrical status as the Hamiltonian: the trajectory in phase space is the intersection of the N − 1 hypersurfaces specified by these ...

  5. Symplectic manifold - Wikipedia

    en.wikipedia.org/wiki/Symplectic_manifold

    Symplectic manifolds arise from classical mechanics; in particular, they are a generalization of the phase space of a closed system. [1] In the same way the Hamilton equations allow one to derive the time evolution of a system from a set of differential equations, the symplectic form should allow one to obtain a vector field describing the flow of the system from the differential of a ...

  6. Hamiltonian fluid mechanics - Wikipedia

    en.wikipedia.org/wiki/Hamiltonian_fluid_mechanics

    Hamiltonian fluid mechanics is the application of Hamiltonian methods to fluid mechanics. Note that this formalism only applies to non dissipative fluids. Irrotational barotropic flow

  7. Hamiltonian vector field - Wikipedia

    en.wikipedia.org/wiki/Hamiltonian_vector_field

    In mathematics and physics, a Hamiltonian vector field on a symplectic manifold is a vector field defined for any energy function or Hamiltonian. Named after the physicist and mathematician Sir William Rowan Hamilton , a Hamiltonian vector field is a geometric manifestation of Hamilton's equations in classical mechanics .

  8. Momentum map - Wikipedia

    en.wikipedia.org/wiki/Momentum_map

    An -action on a symplectic manifold (,) is called Hamiltonian if it is symplectic and if there exists a momentum map. A momentum map is often also required to be G {\displaystyle G} -equivariant , where G {\displaystyle G} acts on g ∗ {\displaystyle {\mathfrak {g}}^{*}} via the coadjoint action , and sometimes this requirement is included in ...

  9. Contact geometry - Wikipedia

    en.wikipedia.org/wiki/Contact_geometry

    Conversely, given any contact manifold M, the product M×R has a natural structure of a symplectic manifold. If α is a contact form on M, then ω = d(e t α) is a symplectic form on M×R, where t denotes the variable in the R-direction. This new manifold is called the symplectization (sometimes symplectification in the literature) of the ...