When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Matching (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Matching_(graph_theory)

    A maximal matching is a matching M of a graph G that is not a subset of any other matching. A matching M of a graph G is maximal if every edge in G has a non-empty intersection with at least one edge in M. The following figure shows examples of maximal matchings (red) in three graphs. A maximum matching (also known as maximum-cardinality ...

  3. Matching polynomial - Wikipedia

    en.wikipedia.org/wiki/Matching_polynomial

    The Hosoya index of a graph G, its number of matchings, is used in chemoinformatics as a structural descriptor of a molecular graph. It may be evaluated as m G (1) (Gutman 1991). The third type of matching polynomial was introduced by Farrell (1980) as a version of the "acyclic polynomial" used in chemistry.

  4. Perfect matching - Wikipedia

    en.wikipedia.org/wiki/Perfect_matching

    In graph theory, a perfect matching in a graph is a matching that covers every vertex of the graph. More formally, given a graph G with edges E and vertices V, a perfect matching in G is a subset M of E, such that every vertex in V is adjacent to exactly one edge in M. The adjacency matrix of a perfect matching is a symmetric permutation matrix.

  5. Matching in hypergraphs - Wikipedia

    en.wikipedia.org/wiki/Matching_in_hypergraphs

    A matching is a special case of a fractional matching in which all fractions are either 0 or 1. The size of a fractional matching is the sum of fractions of all hyperedges. The fractional matching number of a hypergraph H is the largest size of a fractional matching in H. It is often denoted by ν*(H). [3]

  6. Maximum weight matching - Wikipedia

    en.wikipedia.org/wiki/Maximum_weight_matching

    Maximum weight matching of 2 graphs. The first is also a perfect matching, while the second is far from it with 4 vertices unaccounted for, but has high value weights compared to the other edges in the graph. In computer science and graph theory, the maximum weight matching problem is the problem of finding, in a weighted graph, a matching in ...

  7. Petersen's theorem - Wikipedia

    en.wikipedia.org/wiki/Petersen's_theorem

    In a cubic graph with a perfect matching, the edges that are not in the perfect matching form a 2-factor. By orienting the 2-factor, the edges of the perfect matching can be extended to paths of length three, say by taking the outward-oriented edges. This shows that every cubic, bridgeless graph decomposes into edge-disjoint paths of length ...

  8. Maximum cardinality matching - Wikipedia

    en.wikipedia.org/wiki/Maximum_cardinality_matching

    Maximum cardinality matching is a fundamental problem in graph theory. [1] We are given a graph G, and the goal is to find a matching containing as many edges as possible; that is, a maximum cardinality subset of the edges such that each vertex is adjacent to at most one edge of the subset. As each edge will cover exactly two vertices, this ...

  9. Induced matching - Wikipedia

    en.wikipedia.org/wiki/Induced_matching

    The minimum number of colors (induced matchings) needed to cover the graph is the graph's strong chromatic index. In graph theory , an induced matching or strong matching is a subset of the edges of an undirected graph that do not share any vertices (it is a matching ) and these are the only edges connecting any two vertices which are endpoints ...