Search results
Results From The WOW.Com Content Network
Glucose transporter type 4 (GLUT4), also known as solute carrier family 2, facilitated glucose transporter member 4, is a protein encoded, in humans, by the SLC2A4 gene. GLUT4 is the insulin -regulated glucose transporter found primarily in adipose tissues and striated muscle (skeletal and cardiac).
Expressed mostly in neurons (where it is believed to be the main glucose transporter isoform), and in the placenta. Is a high-affinity isoform, allowing it to transport even in times of low glucose concentrations. GLUT4: Expressed in adipose tissues and striated muscle (skeletal muscle and cardiac muscle). Is the insulin-regulated glucose ...
All GLUT proteins share a common structure: 12 transmembrane segments, a single N-linked glycosylation site, a large central cytoplasmic linker, and both N- and C-termini located in the cytoplasm. [4] These transporters are expressed in nearly all body cells. While most GLUTs facilitate glucose transport, HMIT is an exception. [4]
In muscle and adipose tissue, glucose enters through GLUT 4 receptors via facilitated diffusion (). In brain, retina, kidney, RBC, placenta and many other organs, glucose enters using GLUT 1 and GLUT 3. In the beta-cells of the pancreas and in liver cells, glucose enters through the GLUT 2 receptors [3] (process described below).
Cutaneous mechanoreceptors respond to mechanical stimuli that result from physical interaction, including pressure and vibration. They are located in the skin, like other cutaneous receptors. They are all innervated by Aβ fibers, except the mechanorecepting free nerve endings, which are innervated by Aδ fibers. Cutaneous mechanoreceptors can ...
Cutaneous receptors are at the ends of afferent neurons. works within the capsule. Ion channels are situated near these networks. In sensory transduction, the afferent nerves transmit through a series of synapses in the central nervous system, first in the spinal cord, the ventrobasal portion of the thalamus, and then on to the somatosensory cortex.
Ruffini corpuscles respond to sustained pressure [4] and show very little adaptation. [5] Ruffinian endings are located in the deep layers of the skin, and register mechanical deformation within joints, more specifically angle change, with a specificity of up to 2.75 degrees, as well as continuous pressure states.
Nociceptors are specialised receptors for signals of pain. [4] The sense of touch in perceiving the environment uses special sensory receptors in the skin called cutaneous receptors. They include mechanoreceptors such as tactile corpuscles that relay information about pressure and vibration; nociceptors, and thermoreceptors for temperature ...