When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. List of boiling and freezing information of solvents - Wikipedia

    en.wikipedia.org/wiki/List_of_boiling_and...

    Solvent Density (g cm-3) Boiling point (°C) K b (°C⋅kg/mol) Freezing point (°C) K f (°C⋅kg/mol) Data source; Aniline: 184.3 3.69 –5.96 –5.87 K b & K f [1 ...

  3. Chemical polarity - Wikipedia

    en.wikipedia.org/wiki/Chemical_polarity

    In chemistry, polarity is a separation of electric charge leading to a molecule or its chemical groups having an electric dipole moment, with a negatively charged end and a positively charged end. Polar molecules must contain one or more polar bonds due to a difference in electronegativity between the bonded atoms.

  4. Solvent - Wikipedia

    en.wikipedia.org/wiki/Solvent

    Water is a solvent for polar molecules, and the most common solvent used by living things; all the ions and proteins in a cell are dissolved in water within the cell. Major uses of solvents are in paints, paint removers, inks, and dry cleaning. [2]

  5. Azeotrope tables - Wikipedia

    en.wikipedia.org/wiki/Azeotrope_tables

    This page contains tables of azeotrope data for various binary and ternary mixtures of solvents. The data include the composition of a mixture by weight (in binary azeotropes, when only one fraction is given, it is the fraction of the second component), the boiling point (b.p.) of a component, the boiling point of a mixture, and the specific gravity of the mixture.

  6. Polar aprotic solvent - Wikipedia

    en.wikipedia.org/wiki/Polar_aprotic_solvent

    A polar aprotic solvent is a solvent that lacks an acidic proton and is polar. Such solvents lack hydroxyl and amine groups. In contrast to protic solvents, these solvents do not serve as proton donors in hydrogen bonding, although they can be proton acceptors. Many solvents, including chlorocarbons and hydrocarbons, are classifiable as aprotic ...

  7. Solubility - Wikipedia

    en.wikipedia.org/wiki/Solubility

    This view is simplistic, but it is a useful rule of thumb. The overall solvation capacity of a solvent depends primarily on its polarity. [a] For example, a very polar (hydrophilic) solute such as urea is very soluble in highly polar water, less soluble in fairly polar methanol, and practically insoluble in non-polar solvents such as benzene.

  8. Hansen solubility parameter - Wikipedia

    en.wikipedia.org/wiki/Hansen_solubility_parameter

    The Hildebrand parameter for such non-polar solvents is usually close to the Hansen value. A typical example showing why Hildebrand parameters can be unhelpful is that two solvents, butanol and nitroethane, which have the same Hildebrand parameter, are each incapable of dissolving typical epoxy polymers. Yet a 50:50 mix gives a good solvency ...

  9. Hexafluoro-2-propanol - Wikipedia

    en.wikipedia.org/wiki/Hexafluoro-2-propanol

    As a solvent, hexafluoro-2-propanol is polar and exhibits strong hydrogen bonding properties. Testament to the strength of its hydrogen-bonding tendency is the fact that its 1:1 complex with THF distills near 100 °C. It has a relatively high dielectric constant of 16.7.